Loading…

Advances in neurochemical measurements: A review of biomarkers and devices for the development of closed-loop deep brain stimulation systems

Neurochemical recording techniques have expanded our understanding of the pathophysiology of neurological disorders, as well as the mechanisms of action of treatment modalities like deep brain stimulation (DBS). DBS is used to treat diseases such as Parkinson’s disease, Tourette syndrome, and obsess...

Full description

Saved in:
Bibliographic Details
Published in:Reviews in analytical chemistry 2020-01, Vol.39 (1), p.188-199
Main Authors: Rojas Cabrera, Juan M., Blair Price, J., Rusheen, Aaron E., Goyal, Abhinav, Jondal, Danielle, Barath, Abhijeet S., Shin, Hojin, Chang, Su-Youne, Bennet, Kevin E., Blaha, Charles D., Lee, Kendall H., Oh, Yoonbae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neurochemical recording techniques have expanded our understanding of the pathophysiology of neurological disorders, as well as the mechanisms of action of treatment modalities like deep brain stimulation (DBS). DBS is used to treat diseases such as Parkinson’s disease, Tourette syndrome, and obsessive-compulsive disorder, among others. Although DBS is effective at alleviating symptoms related to these diseases and improving the quality of life of these patients, the mechanism of action of DBS is currently not fully understood. A leading hypothesis is that DBS modulates the electrical field potential by modifying neuronal firing frequencies to non-pathological rates thus providing therapeutic relief. To address this gap in knowledge, recent advances in electrochemical sensing techniques have given insight into the importance of neurotransmitters, such as dopamine, serotonin, glutamate, and adenosine, in disease pathophysiology. These studies have also highlighted their potential use in tandem with electrophysiology to serve as biomarkers in disease diagnosis and progression monitoring, as well as characterize response to treatment. Here, we provide an overview of disease-relevant neurotransmitters and their roles and implications as biomarkers, as well as innovations to the biosensors used to record these biomarkers. Furthermore, we discuss currently available neurochemical and electrophysiological recording devices, and discuss their viability to be implemented into the development of a closed-loop DBS system.
ISSN:0793-0135
2191-0189
DOI:10.1515/revac-2020-0117