Loading…

The Assembly Process of Free-Living and Particle-Attached Bacterial Communities in Shrimp-Rearing Waters: The Overwhelming Influence of Nutrient Factors Relative to Microalgal Inoculation

The ecological functions of bacterial communities vary between particle-attached (PA) lifestyles and free-living (FL) lifestyles, and separately exploring their community assembly helps to elucidate the microecological mechanisms of shrimp rearing. Microalgal inoculation and nutrient enrichment duri...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) 2023-11, Vol.13 (22), p.3484
Main Authors: Shi, Yikai, Wang, Xuruo, Cai, Huifeng, Ke, Jiangdong, Zhu, Jinyong, Lu, Kaihong, Zheng, Zhongming, Yang, Wen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ecological functions of bacterial communities vary between particle-attached (PA) lifestyles and free-living (FL) lifestyles, and separately exploring their community assembly helps to elucidate the microecological mechanisms of shrimp rearing. Microalgal inoculation and nutrient enrichment during shrimp rearing are two important driving factors that affect rearing-water bacterial communities, but their relative contributions to the bacterial community assembly have not been evaluated. Here, we inoculated two microalgae, Nannochloropsis oculata and Thalassiosira weissflogii, into shrimp-rearing waters to investigate the distinct effects of various environmental factors on PA and FL bacterial communities. Our study showed that the composition and representative bacteria of different microalgal treatments were significantly different between the PA and FL bacterial communities. Regression analyses and Mantel tests revealed that nutrients were vital factors that constrained the diversity, structure, and co-occurrence patterns of both the PA and FL bacterial communities. Partial least squares path modeling (PLS-PM) analysis indicated that microalgae could directly or indirectly affect the PA bacterial community through nutrient interactions. Moreover, a significant interaction was detected between PA and FL bacterial communities. Our study reveals the unequal effects of microalgae and nutrients on bacterial community assembly and helps explore microbial community assembly in shrimp-rearing ecosystems.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani13223484