Loading…

Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network

Gas turbine hot component failures often cause catastrophic consequences. Fault detection can improve the availability and economy of hot components. The exhaust gas temperature (EGT) profile is usually used to monitor the performance of the hot components. The EGT profile is uniform when the hot co...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2018-08, Vol.11 (8), p.2149
Main Authors: Liu, Jiao, Liu, Jinfu, Yu, Daren, Kang, Myeongsu, Yan, Weizhong, Wang, Zhongqi, Pecht, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-b1041b47c16502a5daea709ff6e499924101a7faa3eec897ee839a91bd3cf7e23
cites cdi_FETCH-LOGICAL-c361t-b1041b47c16502a5daea709ff6e499924101a7faa3eec897ee839a91bd3cf7e23
container_end_page
container_issue 8
container_start_page 2149
container_title Energies (Basel)
container_volume 11
creator Liu, Jiao
Liu, Jinfu
Yu, Daren
Kang, Myeongsu
Yan, Weizhong
Wang, Zhongqi
Pecht, Michael
description Gas turbine hot component failures often cause catastrophic consequences. Fault detection can improve the availability and economy of hot components. The exhaust gas temperature (EGT) profile is usually used to monitor the performance of the hot components. The EGT profile is uniform when the hot component is healthy, whereas hot component faults lead to large temperature differences between different EGT values. The EGT profile swirl under different operating and ambient conditions also cause temperature differences. Therefore, the influence of EGT profile swirl on EGT values must be eliminated. To improve the detection sensitivity, this paper develops a fault detection method for hot components based on a convolutional neural network (CNN). This paper demonstrates that a CNN can extract the information between adjacent EGT values and consider the impact of the EGT profile swirl. This paper reveals, in principle, that a CNN is a viable solution for dealing with fault detection for hot components. Based on the distribution characteristics of EGT thermocouples, the circular padding method is developed in the CNN. The sensitivity of the developed method is verified by real-world data. Moreover, the developed method is visualized in detail. The visualization results reveal that the CNN effectively considers the influence of the EGT profile swirl.
doi_str_mv 10.3390/en11082149
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_45922ad13d2a4f5a950441aa85b4a275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_45922ad13d2a4f5a950441aa85b4a275</doaj_id><sourcerecordid>2108522317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-b1041b47c16502a5daea709ff6e499924101a7faa3eec897ee839a91bd3cf7e23</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVNALX2CJG1LAazsPH6HQh1TBpXC1NskGpaRxsR0Qf0_aImAvsxrNzmp3ougC-LWUmt9QB8BzAUofRSPQOo2BZ_L4X38ajb1f86GkBCnlKHqZYt8Gdk-BytDYjtXWsRl6tupd0XTE5jawid1sbUdd8OwOPVVs0OHAdh-27XdT2LJH6t0ewqd1b-fRSY2tp_EPnkXP04fVZB4vn2aLye0yLmUKIS6AKyhUVkKacIFJhYQZ13WdktJaCwUcMKsRJVGZ64wolxo1FJUs64yEPIsWB9_K4tpsXbNB92UsNmZPWPdq0IWmbMmoRAuBFchKoKoT1AlXChDzpFAosmTwujx4bZ1978kHs7a9G27zRgx_TYSQkA2qq4OqdNZ7R_XvVuBmF4P5i0F-A6PEeIM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108522317</pqid></control><display><type>article</type><title>Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network</title><source>ProQuest Publicly Available Content database</source><creator>Liu, Jiao ; Liu, Jinfu ; Yu, Daren ; Kang, Myeongsu ; Yan, Weizhong ; Wang, Zhongqi ; Pecht, Michael</creator><creatorcontrib>Liu, Jiao ; Liu, Jinfu ; Yu, Daren ; Kang, Myeongsu ; Yan, Weizhong ; Wang, Zhongqi ; Pecht, Michael</creatorcontrib><description>Gas turbine hot component failures often cause catastrophic consequences. Fault detection can improve the availability and economy of hot components. The exhaust gas temperature (EGT) profile is usually used to monitor the performance of the hot components. The EGT profile is uniform when the hot component is healthy, whereas hot component faults lead to large temperature differences between different EGT values. The EGT profile swirl under different operating and ambient conditions also cause temperature differences. Therefore, the influence of EGT profile swirl on EGT values must be eliminated. To improve the detection sensitivity, this paper develops a fault detection method for hot components based on a convolutional neural network (CNN). This paper demonstrates that a CNN can extract the information between adjacent EGT values and consider the impact of the EGT profile swirl. This paper reveals, in principle, that a CNN is a viable solution for dealing with fault detection for hot components. Based on the distribution characteristics of EGT thermocouples, the circular padding method is developed in the CNN. The sensitivity of the developed method is verified by real-world data. Moreover, the developed method is visualized in detail. The visualization results reveal that the CNN effectively considers the influence of the EGT profile swirl.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en11082149</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>convolutional neural network (CNN) ; Cooling ; exhaust gas temperature (EGT) ; Exhaust gases ; Fault detection ; Gas temperature ; gas turbine ; Gas turbine engines ; Gas turbines ; hot component ; Information processing ; Neural networks ; Sensitivity ; Temperature effects ; Temperature gradients ; Thermocouples</subject><ispartof>Energies (Basel), 2018-08, Vol.11 (8), p.2149</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-b1041b47c16502a5daea709ff6e499924101a7faa3eec897ee839a91bd3cf7e23</citedby><cites>FETCH-LOGICAL-c361t-b1041b47c16502a5daea709ff6e499924101a7faa3eec897ee839a91bd3cf7e23</cites><orcidid>0000-0002-7916-8476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,37012</link.rule.ids></links><search><creatorcontrib>Liu, Jiao</creatorcontrib><creatorcontrib>Liu, Jinfu</creatorcontrib><creatorcontrib>Yu, Daren</creatorcontrib><creatorcontrib>Kang, Myeongsu</creatorcontrib><creatorcontrib>Yan, Weizhong</creatorcontrib><creatorcontrib>Wang, Zhongqi</creatorcontrib><creatorcontrib>Pecht, Michael</creatorcontrib><title>Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network</title><title>Energies (Basel)</title><description>Gas turbine hot component failures often cause catastrophic consequences. Fault detection can improve the availability and economy of hot components. The exhaust gas temperature (EGT) profile is usually used to monitor the performance of the hot components. The EGT profile is uniform when the hot component is healthy, whereas hot component faults lead to large temperature differences between different EGT values. The EGT profile swirl under different operating and ambient conditions also cause temperature differences. Therefore, the influence of EGT profile swirl on EGT values must be eliminated. To improve the detection sensitivity, this paper develops a fault detection method for hot components based on a convolutional neural network (CNN). This paper demonstrates that a CNN can extract the information between adjacent EGT values and consider the impact of the EGT profile swirl. This paper reveals, in principle, that a CNN is a viable solution for dealing with fault detection for hot components. Based on the distribution characteristics of EGT thermocouples, the circular padding method is developed in the CNN. The sensitivity of the developed method is verified by real-world data. Moreover, the developed method is visualized in detail. The visualization results reveal that the CNN effectively considers the influence of the EGT profile swirl.</description><subject>convolutional neural network (CNN)</subject><subject>Cooling</subject><subject>exhaust gas temperature (EGT)</subject><subject>Exhaust gases</subject><subject>Fault detection</subject><subject>Gas temperature</subject><subject>gas turbine</subject><subject>Gas turbine engines</subject><subject>Gas turbines</subject><subject>hot component</subject><subject>Information processing</subject><subject>Neural networks</subject><subject>Sensitivity</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Thermocouples</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVNALX2CJG1LAazsPH6HQh1TBpXC1NskGpaRxsR0Qf0_aImAvsxrNzmp3ougC-LWUmt9QB8BzAUofRSPQOo2BZ_L4X38ajb1f86GkBCnlKHqZYt8Gdk-BytDYjtXWsRl6tupd0XTE5jawid1sbUdd8OwOPVVs0OHAdh-27XdT2LJH6t0ewqd1b-fRSY2tp_EPnkXP04fVZB4vn2aLye0yLmUKIS6AKyhUVkKacIFJhYQZ13WdktJaCwUcMKsRJVGZ64wolxo1FJUs64yEPIsWB9_K4tpsXbNB92UsNmZPWPdq0IWmbMmoRAuBFchKoKoT1AlXChDzpFAosmTwujx4bZ1978kHs7a9G27zRgx_TYSQkA2qq4OqdNZ7R_XvVuBmF4P5i0F-A6PEeIM</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Liu, Jiao</creator><creator>Liu, Jinfu</creator><creator>Yu, Daren</creator><creator>Kang, Myeongsu</creator><creator>Yan, Weizhong</creator><creator>Wang, Zhongqi</creator><creator>Pecht, Michael</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7916-8476</orcidid></search><sort><creationdate>20180801</creationdate><title>Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network</title><author>Liu, Jiao ; Liu, Jinfu ; Yu, Daren ; Kang, Myeongsu ; Yan, Weizhong ; Wang, Zhongqi ; Pecht, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-b1041b47c16502a5daea709ff6e499924101a7faa3eec897ee839a91bd3cf7e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>convolutional neural network (CNN)</topic><topic>Cooling</topic><topic>exhaust gas temperature (EGT)</topic><topic>Exhaust gases</topic><topic>Fault detection</topic><topic>Gas temperature</topic><topic>gas turbine</topic><topic>Gas turbine engines</topic><topic>Gas turbines</topic><topic>hot component</topic><topic>Information processing</topic><topic>Neural networks</topic><topic>Sensitivity</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Thermocouples</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiao</creatorcontrib><creatorcontrib>Liu, Jinfu</creatorcontrib><creatorcontrib>Yu, Daren</creatorcontrib><creatorcontrib>Kang, Myeongsu</creatorcontrib><creatorcontrib>Yan, Weizhong</creatorcontrib><creatorcontrib>Wang, Zhongqi</creatorcontrib><creatorcontrib>Pecht, Michael</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiao</au><au>Liu, Jinfu</au><au>Yu, Daren</au><au>Kang, Myeongsu</au><au>Yan, Weizhong</au><au>Wang, Zhongqi</au><au>Pecht, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network</atitle><jtitle>Energies (Basel)</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>11</volume><issue>8</issue><spage>2149</spage><pages>2149-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Gas turbine hot component failures often cause catastrophic consequences. Fault detection can improve the availability and economy of hot components. The exhaust gas temperature (EGT) profile is usually used to monitor the performance of the hot components. The EGT profile is uniform when the hot component is healthy, whereas hot component faults lead to large temperature differences between different EGT values. The EGT profile swirl under different operating and ambient conditions also cause temperature differences. Therefore, the influence of EGT profile swirl on EGT values must be eliminated. To improve the detection sensitivity, this paper develops a fault detection method for hot components based on a convolutional neural network (CNN). This paper demonstrates that a CNN can extract the information between adjacent EGT values and consider the impact of the EGT profile swirl. This paper reveals, in principle, that a CNN is a viable solution for dealing with fault detection for hot components. Based on the distribution characteristics of EGT thermocouples, the circular padding method is developed in the CNN. The sensitivity of the developed method is verified by real-world data. Moreover, the developed method is visualized in detail. The visualization results reveal that the CNN effectively considers the influence of the EGT profile swirl.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en11082149</doi><orcidid>https://orcid.org/0000-0002-7916-8476</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2018-08, Vol.11 (8), p.2149
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_45922ad13d2a4f5a950441aa85b4a275
source ProQuest Publicly Available Content database
subjects convolutional neural network (CNN)
Cooling
exhaust gas temperature (EGT)
Exhaust gases
Fault detection
Gas temperature
gas turbine
Gas turbine engines
Gas turbines
hot component
Information processing
Neural networks
Sensitivity
Temperature effects
Temperature gradients
Thermocouples
title Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Detection%20for%20Gas%20Turbine%20Hot%20Components%20Based%20on%20a%20Convolutional%20Neural%20Network&rft.jtitle=Energies%20(Basel)&rft.au=Liu,%20Jiao&rft.date=2018-08-01&rft.volume=11&rft.issue=8&rft.spage=2149&rft.pages=2149-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en11082149&rft_dat=%3Cproquest_doaj_%3E2108522317%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-b1041b47c16502a5daea709ff6e499924101a7faa3eec897ee839a91bd3cf7e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108522317&rft_id=info:pmid/&rfr_iscdi=true