Loading…

mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4

The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate prote...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) 2017-05, Vol.19 (6), p.1083-1090
Main Authors: Park, Yeonwoo, Reyna-Neyra, Andrea, Philippe, Lucas, Thoreen, Carson C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-a9c641ec5caa75f2791b9006b2ca4910ea34f8ad22047fe41fc90a3525aa3ad53
cites cdi_FETCH-LOGICAL-c529t-a9c641ec5caa75f2791b9006b2ca4910ea34f8ad22047fe41fc90a3525aa3ad53
container_end_page 1090
container_issue 6
container_start_page 1083
container_title Cell reports (Cambridge)
container_volume 19
creator Park, Yeonwoo
Reyna-Neyra, Andrea
Philippe, Lucas
Thoreen, Carson C.
description The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4), a key effector of the integrated stress response. ATF4 translation is normally induced by the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) through a mechanism that requires upstream open reading frames (uORFs) in the ATF4 5′ UTR. mTORC1 also controls ATF4 translation through uORFs, but independently of changes in eIF2α phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP) family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery. [Display omitted] •mTORC1 transcriptionally regulates amino acid transporters and enzymes via ATF4•mTORC1 controls ATF4 by regulating the translation and stability of its mRNA•Control of ATF4 translation requires uORFs, but not changes in eIF2α phosphorylation•mTORC1 control of ATF4 translation instead employs the 4E-BP translation repressors Park et al. show that mTORC1 transcriptionally regulates amino acid transporters, metabolic enzymes, and aminoacyl-tRNA synthetases. This program is mediated through post-transcriptional control of the ATF4 transcription factor. Regulation of ATF4 translation still requires upstream ORFs, but it is independent of eIF2α phosphorylation. mTORC1 instead employs the 4E-BP translation repressors.
doi_str_mv 10.1016/j.celrep.2017.04.042
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_459f6d7488c04317a580767ff625174c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124717305363</els_id><doaj_id>oai_doaj_org_article_459f6d7488c04317a580767ff625174c</doaj_id><sourcerecordid>1899109624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-a9c641ec5caa75f2791b9006b2ca4910ea34f8ad22047fe41fc90a3525aa3ad53</originalsourceid><addsrcrecordid>eNp9UsFuEzEQXSEQrUr_ACEfuSTYjr27viCFQKFSpVY0nK2Jd5w48q4X21uUv8clpbQXrJE8smfezJs3VfWW0TmjrP6wnxv0Ecc5p6yZU1GMv6hOOWdsxrhoXj7xT6rzlPa0nJoypsTr6oS3QolWtqfVoV9ff18x8gk8DAYTWaH3k4dIlr0bAlka15HbaRz9gfxyeUc-Yw9DR2yI5CaGjG4gt4ch7zC5RPIuhmm7Izch5VmOMCQT3ZhdGMCTVRhyDJ4ES5brC_GmemXBJzx_uM-qHxdf1qtvs6vrr5er5dXMSK7yDJSpBUMjDUAjLW8U26hCZcMNCMUowkLYFjrOqWgsCmaNorCQXAIsoJOLs-ryiNsF2Osxuh7iQQdw-s9DiFsNMTvjUQupbN01om0NFQvWgGxpUzfW1lyyRpiC9fGINU6bHjuDhRH4Z6DPfwa309twp2XLWOmwALx_AIjh54Qp696lImUZPoYpadaqwknVXJRQcQw1MaQU0T6WYVTfL4He6-MS6Psl0FQU4yXt3dMWH5P-Sv6PA5ah3zmMOhmHRfvORTS5TMX9v8JvsB3FSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899109624</pqid></control><display><type>article</type><title>mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Park, Yeonwoo ; Reyna-Neyra, Andrea ; Philippe, Lucas ; Thoreen, Carson C.</creator><creatorcontrib>Park, Yeonwoo ; Reyna-Neyra, Andrea ; Philippe, Lucas ; Thoreen, Carson C.</creatorcontrib><description>The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4), a key effector of the integrated stress response. ATF4 translation is normally induced by the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) through a mechanism that requires upstream open reading frames (uORFs) in the ATF4 5′ UTR. mTORC1 also controls ATF4 translation through uORFs, but independently of changes in eIF2α phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP) family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery. [Display omitted] •mTORC1 transcriptionally regulates amino acid transporters and enzymes via ATF4•mTORC1 controls ATF4 by regulating the translation and stability of its mRNA•Control of ATF4 translation requires uORFs, but not changes in eIF2α phosphorylation•mTORC1 control of ATF4 translation instead employs the 4E-BP translation repressors Park et al. show that mTORC1 transcriptionally regulates amino acid transporters, metabolic enzymes, and aminoacyl-tRNA synthetases. This program is mediated through post-transcriptional control of the ATF4 transcription factor. Regulation of ATF4 translation still requires upstream ORFs, but it is independent of eIF2α phosphorylation. mTORC1 instead employs the 4E-BP translation repressors.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2017.04.042</identifier><identifier>PMID: 28494858</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>5' Untranslated Regions ; Activating Transcription Factor 4 - genetics ; Activating Transcription Factor 4 - metabolism ; Amino Acid Transport Systems - metabolism ; amino acid uptake ; Animals ; ATF4 ; Eukaryotic Initiation Factor-2 - metabolism ; HEK293 Cells ; Humans ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; mTOR ; mTORC1 ; Open Reading Frames ; RNA Processing, Post-Transcriptional ; RNA Stability ; RNA, Messenger - genetics ; RNA, Messenger - metabolism</subject><ispartof>Cell reports (Cambridge), 2017-05, Vol.19 (6), p.1083-1090</ispartof><rights>2017 The Author(s)</rights><rights>Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-a9c641ec5caa75f2791b9006b2ca4910ea34f8ad22047fe41fc90a3525aa3ad53</citedby><cites>FETCH-LOGICAL-c529t-a9c641ec5caa75f2791b9006b2ca4910ea34f8ad22047fe41fc90a3525aa3ad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28494858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Yeonwoo</creatorcontrib><creatorcontrib>Reyna-Neyra, Andrea</creatorcontrib><creatorcontrib>Philippe, Lucas</creatorcontrib><creatorcontrib>Thoreen, Carson C.</creatorcontrib><title>mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4), a key effector of the integrated stress response. ATF4 translation is normally induced by the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) through a mechanism that requires upstream open reading frames (uORFs) in the ATF4 5′ UTR. mTORC1 also controls ATF4 translation through uORFs, but independently of changes in eIF2α phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP) family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery. [Display omitted] •mTORC1 transcriptionally regulates amino acid transporters and enzymes via ATF4•mTORC1 controls ATF4 by regulating the translation and stability of its mRNA•Control of ATF4 translation requires uORFs, but not changes in eIF2α phosphorylation•mTORC1 control of ATF4 translation instead employs the 4E-BP translation repressors Park et al. show that mTORC1 transcriptionally regulates amino acid transporters, metabolic enzymes, and aminoacyl-tRNA synthetases. This program is mediated through post-transcriptional control of the ATF4 transcription factor. Regulation of ATF4 translation still requires upstream ORFs, but it is independent of eIF2α phosphorylation. mTORC1 instead employs the 4E-BP translation repressors.</description><subject>5' Untranslated Regions</subject><subject>Activating Transcription Factor 4 - genetics</subject><subject>Activating Transcription Factor 4 - metabolism</subject><subject>Amino Acid Transport Systems - metabolism</subject><subject>amino acid uptake</subject><subject>Animals</subject><subject>ATF4</subject><subject>Eukaryotic Initiation Factor-2 - metabolism</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>mTOR</subject><subject>mTORC1</subject><subject>Open Reading Frames</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA Stability</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UsFuEzEQXSEQrUr_ACEfuSTYjr27viCFQKFSpVY0nK2Jd5w48q4X21uUv8clpbQXrJE8smfezJs3VfWW0TmjrP6wnxv0Ecc5p6yZU1GMv6hOOWdsxrhoXj7xT6rzlPa0nJoypsTr6oS3QolWtqfVoV9ff18x8gk8DAYTWaH3k4dIlr0bAlka15HbaRz9gfxyeUc-Yw9DR2yI5CaGjG4gt4ch7zC5RPIuhmm7Izch5VmOMCQT3ZhdGMCTVRhyDJ4ES5brC_GmemXBJzx_uM-qHxdf1qtvs6vrr5er5dXMSK7yDJSpBUMjDUAjLW8U26hCZcMNCMUowkLYFjrOqWgsCmaNorCQXAIsoJOLs-ryiNsF2Osxuh7iQQdw-s9DiFsNMTvjUQupbN01om0NFQvWgGxpUzfW1lyyRpiC9fGINU6bHjuDhRH4Z6DPfwa309twp2XLWOmwALx_AIjh54Qp696lImUZPoYpadaqwknVXJRQcQw1MaQU0T6WYVTfL4He6-MS6Psl0FQU4yXt3dMWH5P-Sv6PA5ah3zmMOhmHRfvORTS5TMX9v8JvsB3FSQ</recordid><startdate>20170509</startdate><enddate>20170509</enddate><creator>Park, Yeonwoo</creator><creator>Reyna-Neyra, Andrea</creator><creator>Philippe, Lucas</creator><creator>Thoreen, Carson C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170509</creationdate><title>mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4</title><author>Park, Yeonwoo ; Reyna-Neyra, Andrea ; Philippe, Lucas ; Thoreen, Carson C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-a9c641ec5caa75f2791b9006b2ca4910ea34f8ad22047fe41fc90a3525aa3ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>5' Untranslated Regions</topic><topic>Activating Transcription Factor 4 - genetics</topic><topic>Activating Transcription Factor 4 - metabolism</topic><topic>Amino Acid Transport Systems - metabolism</topic><topic>amino acid uptake</topic><topic>Animals</topic><topic>ATF4</topic><topic>Eukaryotic Initiation Factor-2 - metabolism</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>mTOR</topic><topic>mTORC1</topic><topic>Open Reading Frames</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA Stability</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Yeonwoo</creatorcontrib><creatorcontrib>Reyna-Neyra, Andrea</creatorcontrib><creatorcontrib>Philippe, Lucas</creatorcontrib><creatorcontrib>Thoreen, Carson C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Yeonwoo</au><au>Reyna-Neyra, Andrea</au><au>Philippe, Lucas</au><au>Thoreen, Carson C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2017-05-09</date><risdate>2017</risdate><volume>19</volume><issue>6</issue><spage>1083</spage><epage>1090</epage><pages>1083-1090</pages><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4), a key effector of the integrated stress response. ATF4 translation is normally induced by the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) through a mechanism that requires upstream open reading frames (uORFs) in the ATF4 5′ UTR. mTORC1 also controls ATF4 translation through uORFs, but independently of changes in eIF2α phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP) family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery. [Display omitted] •mTORC1 transcriptionally regulates amino acid transporters and enzymes via ATF4•mTORC1 controls ATF4 by regulating the translation and stability of its mRNA•Control of ATF4 translation requires uORFs, but not changes in eIF2α phosphorylation•mTORC1 control of ATF4 translation instead employs the 4E-BP translation repressors Park et al. show that mTORC1 transcriptionally regulates amino acid transporters, metabolic enzymes, and aminoacyl-tRNA synthetases. This program is mediated through post-transcriptional control of the ATF4 transcription factor. Regulation of ATF4 translation still requires upstream ORFs, but it is independent of eIF2α phosphorylation. mTORC1 instead employs the 4E-BP translation repressors.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28494858</pmid><doi>10.1016/j.celrep.2017.04.042</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2017-05, Vol.19 (6), p.1083-1090
issn 2211-1247
2211-1247
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_459f6d7488c04317a580767ff625174c
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects 5' Untranslated Regions
Activating Transcription Factor 4 - genetics
Activating Transcription Factor 4 - metabolism
Amino Acid Transport Systems - metabolism
amino acid uptake
Animals
ATF4
Eukaryotic Initiation Factor-2 - metabolism
HEK293 Cells
Humans
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice
mTOR
mTORC1
Open Reading Frames
RNA Processing, Post-Transcriptional
RNA Stability
RNA, Messenger - genetics
RNA, Messenger - metabolism
title mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC1%20Balances%20Cellular%20Amino%20Acid%20Supply%20with%20Demand%20for%20Protein%20Synthesis%20through%20Post-transcriptional%20Control%20of%20ATF4&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Park,%20Yeonwoo&rft.date=2017-05-09&rft.volume=19&rft.issue=6&rft.spage=1083&rft.epage=1090&rft.pages=1083-1090&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2017.04.042&rft_dat=%3Cproquest_doaj_%3E1899109624%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-a9c641ec5caa75f2791b9006b2ca4910ea34f8ad22047fe41fc90a3525aa3ad53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899109624&rft_id=info:pmid/28494858&rfr_iscdi=true