Loading…
Ultrashort Echo Time and Fast Field Echo Imaging for Spine Bone Imaging with Application in Spondylolysis Evaluation
Isthmic spondylolysis is characterized by a stress injury to the pars interarticularis bones of the lumbar spines and is often missed by conventional magnetic resonance imaging (MRI), necessitating a computed tomography (CT) for accurate diagnosis. We compare MRI techniques suitable for producing CT...
Saved in:
Published in: | Computation 2024-08, Vol.12 (8), p.152 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Isthmic spondylolysis is characterized by a stress injury to the pars interarticularis bones of the lumbar spines and is often missed by conventional magnetic resonance imaging (MRI), necessitating a computed tomography (CT) for accurate diagnosis. We compare MRI techniques suitable for producing CT-like images. Lumbar spines of asymptomatic and low back pain (LBP) subjects were imaged at 3-Tesla with multi-echo ultrashort echo time (UTE) and field echo (FE) sequences followed by simple post-processing of averaging and inverting to depict spinal bones with a CT-like appearance. The contrast-to-noise ratio (CNR) for bone was determined to compare UTE vs. FE and single-echo vs. multi-echo data. Visually, both sequences depicted cortical bone with good contrast; UTE-processed sequences provided a flatter contrast for soft tissues that made them easy to distinguish from bone, while FE-processed images had better resolution and bone–muscle contrast, which are important for fracture detection. Additionally, multi-echo images provided significantly (p = 0.03) greater CNR compared with single-echo images. Using these techniques, progressive spondylolysis was detected in an LBP subject. This study demonstrates the feasibility of using spine bone MRI to yield CT-like contrast. Through the employment of multi-echo UTE and FE sequences combined with simple processing, we observe sufficient enhancements in image quality and contrast to detect pars fractures. |
---|---|
ISSN: | 2079-3197 2079-3197 |
DOI: | 10.3390/computation12080152 |