Loading…

Sirtuin 1 regulates the phenotype and functions of dendritic cells through Ido1 pathway in obesity

Sirtuin 1 (SIRT1) is a class III histone deacetylase (HDAC3) that plays a crucial role in regulating the activation and differentiation of dendritic cells (DCs) as well as controlling the polarization and activation of T cells. Obesity, a chronic inflammatory condition, is characterized by the activ...

Full description

Saved in:
Bibliographic Details
Published in:Cell death & disease 2024-10, Vol.15 (10), p.757-17, Article 757
Main Authors: de Lima, Jean, Leite, Jefferson Antônio, Basso, Paulo José, Ghirotto, Bruno, Martins da Silva, Eloisa, Menezes-Silva, Luisa, Hiyane, Meire Ioshie, Goes, Carolina Purcell, Coutinho, Luiz Lehmann, de Andrade Oliveira, Vinicius, Olsen Saraiva Câmara, Niels
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sirtuin 1 (SIRT1) is a class III histone deacetylase (HDAC3) that plays a crucial role in regulating the activation and differentiation of dendritic cells (DCs) as well as controlling the polarization and activation of T cells. Obesity, a chronic inflammatory condition, is characterized by the activation of immune cells in various tissues. We hypothesized that SIRT1 might influence the phenotype and functions of DCs through the Ido1 pathway, ultimately leading to the polarization towards pro-inflammatory T cells in obesity. In our study, we observed that SIRT1 activity was reduced in bone marrow-derived DCs (BMDCs) from obese animals. These BMDCs exhibited elevated oxidative phosphorylation (OXPHOS) and increased extracellular acidification rates (ECAR), along with enhanced expression of class II MHC, CD86, and CD40, and elevated secretion of IL-12p40, while the production of TGF-β was reduced. The kynurenine pathway activity was decreased in BMDCs from obese animals, particularly under SIRT1 inhibition. SIRT1 positively regulated the expression of Ido1 in DCs in a PPARγ-dependent manner. To support these findings, ATAC-seq analysis revealed that BMDCs from obese mice had differentially regulated open chromatin regions compared to those from lean mice, with reduced chromatin accessibility at the Sirt1 genomic locus in BMDCs from obese WT mice. Gene Ontology (GO) enrichment analysis indicated that BMDCs from obese animals had disrupted metabolic pathways, including those related to GTPase activity and insulin response. Differential expression analysis showed reduced levels of Pparg and Sirt1 in BMDCs from obese mice, which was challenged and confirmed using BMDCs from mice with conditional knockout of Sirt1 in dendritic cells (SIRT1∆). This study highlights that SIRT1 controls the metabolism and functions of DCs through modulation of the kynurenine pathway, with significant implications for obesity-related inflammation.
ISSN:2041-4889
2041-4889
DOI:10.1038/s41419-024-07125-3