Loading…

AN OTSU image segmentation based on fruitfly optimization algorithm

Despite its simplicity and high accuracy, the real-time efficiency of OTSU segmentation is not high. In order to promote the real-timeliness of image segmentation, this paper introduces the fruitfly optimization algorithm (FOA) to OTSU segmentation, creating an FOA-OTSU segmentation algorithm. In th...

Full description

Saved in:
Bibliographic Details
Published in:Alexandria engineering journal 2021-02, Vol.60 (1), p.183-188
Main Authors: Huang, Chunyan, Li, Xiaorui, Wen, Yunliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-4f07e794dba7eeab448584b7f107bf51d3d1be82c2632b95fc75857775bf6813
cites cdi_FETCH-LOGICAL-c406t-4f07e794dba7eeab448584b7f107bf51d3d1be82c2632b95fc75857775bf6813
container_end_page 188
container_issue 1
container_start_page 183
container_title Alexandria engineering journal
container_volume 60
creator Huang, Chunyan
Li, Xiaorui
Wen, Yunliang
description Despite its simplicity and high accuracy, the real-time efficiency of OTSU segmentation is not high. In order to promote the real-timeliness of image segmentation, this paper introduces the fruitfly optimization algorithm (FOA) to OTSU segmentation, creating an FOA-OTSU segmentation algorithm. In the proposed algorithm, the optimal threshold for segmentation is searched for by the FOA. The classic Lena picture, Flower picture and Cameraman picture were used for simulation experiment, and the results were evaluated by signal-to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR). The results show that the segmentation time is reduced by about 50.0% on the premise of the PSNR and SNR evaluation criteria and the segmentation effect basically unchanged. The simulations indicate that our method converges faster and consumes fewer time than traditional OTSU algorithm, without sacrificing the segmentation accuracy. The research provides a desirable tool with high real-time performance of rapid image segmentation.
doi_str_mv 10.1016/j.aej.2020.06.054
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_45c8167d32c04e1ca0e1e395005bf0e1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1110016820303215</els_id><doaj_id>oai_doaj_org_article_45c8167d32c04e1ca0e1e395005bf0e1</doaj_id><sourcerecordid>S1110016820303215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4f07e794dba7eeab448584b7f107bf51d3d1be82c2632b95fc75857775bf6813</originalsourceid><addsrcrecordid>eNp9UMtOwzAQ9AEkqtIP4JYfSLATPxJxqipeUkUPlLNlO-vgKGkq2yCVr8cliCN72dGuZnZnELohuCCY8Nu-UNAXJS5xgXmBGb1AC0IIztOyvkKrEHqciomGNnyBNuuXbLd_fcvcqDrIAnQjHKKKbjpkWgVoswSs_3DRDqdsOkY3uq95rYZu8i6-j9fo0qohwOq3L9H-4X6_ecq3u8fnzXqbG4p5zKnFAtLZVisBoDSlNaupFpZgoS0jbdUSDXVpSl6VumHWCFYzIQTTltekWqLnWbadVC-PPn3sT3JSTv4MJt9J5aMzA0jKTE24aKvSYArEKAwEqoYl39omnLTIrGX8FIIH-6dHsDznKHuZcpTnHCXmMuWYOHczB5LHTwdeBuPgYKB1HkxMX7h_2N_FAXwL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN OTSU image segmentation based on fruitfly optimization algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Chunyan ; Li, Xiaorui ; Wen, Yunliang</creator><creatorcontrib>Huang, Chunyan ; Li, Xiaorui ; Wen, Yunliang</creatorcontrib><description>Despite its simplicity and high accuracy, the real-time efficiency of OTSU segmentation is not high. In order to promote the real-timeliness of image segmentation, this paper introduces the fruitfly optimization algorithm (FOA) to OTSU segmentation, creating an FOA-OTSU segmentation algorithm. In the proposed algorithm, the optimal threshold for segmentation is searched for by the FOA. The classic Lena picture, Flower picture and Cameraman picture were used for simulation experiment, and the results were evaluated by signal-to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR). The results show that the segmentation time is reduced by about 50.0% on the premise of the PSNR and SNR evaluation criteria and the segmentation effect basically unchanged. The simulations indicate that our method converges faster and consumes fewer time than traditional OTSU algorithm, without sacrificing the segmentation accuracy. The research provides a desirable tool with high real-time performance of rapid image segmentation.</description><identifier>ISSN: 1110-0168</identifier><identifier>DOI: 10.1016/j.aej.2020.06.054</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Evaluation index ; Fruit fly optimization algorithm (FOA) ; Image segmentation ; OTSU ; Threshold</subject><ispartof>Alexandria engineering journal, 2021-02, Vol.60 (1), p.183-188</ispartof><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-4f07e794dba7eeab448584b7f107bf51d3d1be82c2632b95fc75857775bf6813</citedby><cites>FETCH-LOGICAL-c406t-4f07e794dba7eeab448584b7f107bf51d3d1be82c2632b95fc75857775bf6813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1110016820303215$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Huang, Chunyan</creatorcontrib><creatorcontrib>Li, Xiaorui</creatorcontrib><creatorcontrib>Wen, Yunliang</creatorcontrib><title>AN OTSU image segmentation based on fruitfly optimization algorithm</title><title>Alexandria engineering journal</title><description>Despite its simplicity and high accuracy, the real-time efficiency of OTSU segmentation is not high. In order to promote the real-timeliness of image segmentation, this paper introduces the fruitfly optimization algorithm (FOA) to OTSU segmentation, creating an FOA-OTSU segmentation algorithm. In the proposed algorithm, the optimal threshold for segmentation is searched for by the FOA. The classic Lena picture, Flower picture and Cameraman picture were used for simulation experiment, and the results were evaluated by signal-to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR). The results show that the segmentation time is reduced by about 50.0% on the premise of the PSNR and SNR evaluation criteria and the segmentation effect basically unchanged. The simulations indicate that our method converges faster and consumes fewer time than traditional OTSU algorithm, without sacrificing the segmentation accuracy. The research provides a desirable tool with high real-time performance of rapid image segmentation.</description><subject>Evaluation index</subject><subject>Fruit fly optimization algorithm (FOA)</subject><subject>Image segmentation</subject><subject>OTSU</subject><subject>Threshold</subject><issn>1110-0168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UMtOwzAQ9AEkqtIP4JYfSLATPxJxqipeUkUPlLNlO-vgKGkq2yCVr8cliCN72dGuZnZnELohuCCY8Nu-UNAXJS5xgXmBGb1AC0IIztOyvkKrEHqciomGNnyBNuuXbLd_fcvcqDrIAnQjHKKKbjpkWgVoswSs_3DRDqdsOkY3uq95rYZu8i6-j9fo0qohwOq3L9H-4X6_ecq3u8fnzXqbG4p5zKnFAtLZVisBoDSlNaupFpZgoS0jbdUSDXVpSl6VumHWCFYzIQTTltekWqLnWbadVC-PPn3sT3JSTv4MJt9J5aMzA0jKTE24aKvSYArEKAwEqoYl39omnLTIrGX8FIIH-6dHsDznKHuZcpTnHCXmMuWYOHczB5LHTwdeBuPgYKB1HkxMX7h_2N_FAXwL</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Huang, Chunyan</creator><creator>Li, Xiaorui</creator><creator>Wen, Yunliang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202102</creationdate><title>AN OTSU image segmentation based on fruitfly optimization algorithm</title><author>Huang, Chunyan ; Li, Xiaorui ; Wen, Yunliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4f07e794dba7eeab448584b7f107bf51d3d1be82c2632b95fc75857775bf6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Evaluation index</topic><topic>Fruit fly optimization algorithm (FOA)</topic><topic>Image segmentation</topic><topic>OTSU</topic><topic>Threshold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Chunyan</creatorcontrib><creatorcontrib>Li, Xiaorui</creatorcontrib><creatorcontrib>Wen, Yunliang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Alexandria engineering journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Chunyan</au><au>Li, Xiaorui</au><au>Wen, Yunliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN OTSU image segmentation based on fruitfly optimization algorithm</atitle><jtitle>Alexandria engineering journal</jtitle><date>2021-02</date><risdate>2021</risdate><volume>60</volume><issue>1</issue><spage>183</spage><epage>188</epage><pages>183-188</pages><issn>1110-0168</issn><abstract>Despite its simplicity and high accuracy, the real-time efficiency of OTSU segmentation is not high. In order to promote the real-timeliness of image segmentation, this paper introduces the fruitfly optimization algorithm (FOA) to OTSU segmentation, creating an FOA-OTSU segmentation algorithm. In the proposed algorithm, the optimal threshold for segmentation is searched for by the FOA. The classic Lena picture, Flower picture and Cameraman picture were used for simulation experiment, and the results were evaluated by signal-to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR). The results show that the segmentation time is reduced by about 50.0% on the premise of the PSNR and SNR evaluation criteria and the segmentation effect basically unchanged. The simulations indicate that our method converges faster and consumes fewer time than traditional OTSU algorithm, without sacrificing the segmentation accuracy. The research provides a desirable tool with high real-time performance of rapid image segmentation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.aej.2020.06.054</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-0168
ispartof Alexandria engineering journal, 2021-02, Vol.60 (1), p.183-188
issn 1110-0168
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_45c8167d32c04e1ca0e1e395005bf0e1
source Elsevier ScienceDirect Journals
subjects Evaluation index
Fruit fly optimization algorithm (FOA)
Image segmentation
OTSU
Threshold
title AN OTSU image segmentation based on fruitfly optimization algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20OTSU%20image%20segmentation%20based%20on%20fruitfly%20optimization%20algorithm&rft.jtitle=Alexandria%20engineering%20journal&rft.au=Huang,%20Chunyan&rft.date=2021-02&rft.volume=60&rft.issue=1&rft.spage=183&rft.epage=188&rft.pages=183-188&rft.issn=1110-0168&rft_id=info:doi/10.1016/j.aej.2020.06.054&rft_dat=%3Celsevier_doaj_%3ES1110016820303215%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-4f07e794dba7eeab448584b7f107bf51d3d1be82c2632b95fc75857775bf6813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true