Loading…
Global Period-Doubling Bifurcation of Quadratic Fractional Second Order Difference Equation
We investigate the local stability and the global asymptotic stability of the difference equation xn+1=αxn2+βxnxn-1+γxn-1/Axn2+Bxnxn-1+Cxn-1, n=0,1,… with nonnegative parameters and initial conditions such that Axn2+Bxnxn-1+Cxn-1>0, for all n≥0. We obtain the local stability of the equilibrium fo...
Saved in:
Published in: | Discrete Dynamics in Nature and Society 2014-01, Vol.2014 (2014), p.718-730-266 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a566t-93e4cf346f2827cc723ec08f92de16e7a762208e94de1b78fa15e2b5924696be3 |
---|---|
cites | cdi_FETCH-LOGICAL-a566t-93e4cf346f2827cc723ec08f92de16e7a762208e94de1b78fa15e2b5924696be3 |
container_end_page | 730-266 |
container_issue | 2014 |
container_start_page | 718 |
container_title | Discrete Dynamics in Nature and Society |
container_volume | 2014 |
creator | Kalabusic, Senada Kulenovic, M.R.S Mehuljic, M |
description | We investigate the local stability and the global asymptotic stability of the difference equation xn+1=αxn2+βxnxn-1+γxn-1/Axn2+Bxnxn-1+Cxn-1, n=0,1,… with nonnegative parameters and initial conditions such that Axn2+Bxnxn-1+Cxn-1>0, for all n≥0. We obtain the local stability of the equilibrium for all values of parameters and give some global asymptotic stability results for some values of the parameters. We also obtain global dynamics in the special case, where β=B=0, in which case we show that such equation exhibits a global period doubling bifurcation. |
doi_str_mv | 10.1155/2014/920410 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_45d0cfb6bb524414825ba2d054d9ff26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423816494</galeid><airiti_id>P20160913003_201412_201611170001_201611170001_718_730_266</airiti_id><doaj_id>oai_doaj_org_article_45d0cfb6bb524414825ba2d054d9ff26</doaj_id><sourcerecordid>A423816494</sourcerecordid><originalsourceid>FETCH-LOGICAL-a566t-93e4cf346f2827cc723ec08f92de16e7a762208e94de1b78fa15e2b5924696be3</originalsourceid><addsrcrecordid>eNqFkc9rFTEQxxdRsFZPnoUFL6JsO5nNZjfH2l8WCn2iguAhZJPJM4_tps2-RfzvnfdWKnqRHCYz-cw386MoXgo4EqJpjhGEPNYIUsCj4kAoaKuua78-5jugqgBRPS2eTdMGAKHTeFB8uxxSb4dyRTkmX52luR_iuC7fxzBnZ7cxjWUK5cfZ-syeKy-ydbso53wil0Zf3mRPuTyLIVCm0VF5fj_vE58XT4IdJnrx2x4WXy7OP59-qK5vLq9OT64r2yi1rXRN0oVaqoAdts61WJODLmj0JBS1tlXI1ZKW7PdtF6xoCPtGo1Ra9VQfFleLrk92Y-5yvLX5p0k2mn0g5bWxmWsfyMjGgwu96vsGpRSyw6a36KGRXoeAirXeLFp3Od3PNG3NbZwcDYMdKc2TEQoBJI8ZGX39D7pJc-bBMNXIVgshVcfU0UKtLf8fx5C2PEE-nm4jz49C5PgJ63VCSS054d2S4HKapkzhoSMBZrdls9uyWbbM9NuF_h5Hb3_E_8CvFpgYoWAf4AY6BM3vq-Xdxhy38U8_K1ZRoEUNUO8VBe6MEkK0ACD-dlrRmbYGg0rVvwDZ5MMp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547911468</pqid></control><display><type>article</type><title>Global Period-Doubling Bifurcation of Quadratic Fractional Second Order Difference Equation</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Kalabusic, Senada ; Kulenovic, M.R.S ; Mehuljic, M</creator><contributor>Abu-Saris, Raghib</contributor><creatorcontrib>Kalabusic, Senada ; Kulenovic, M.R.S ; Mehuljic, M ; Abu-Saris, Raghib</creatorcontrib><description>We investigate the local stability and the global asymptotic stability of the difference equation xn+1=αxn2+βxnxn-1+γxn-1/Axn2+Bxnxn-1+Cxn-1, n=0,1,… with nonnegative parameters and initial conditions such that Axn2+Bxnxn-1+Cxn-1>0, for all n≥0. We obtain the local stability of the equilibrium for all values of parameters and give some global asymptotic stability results for some values of the parameters. We also obtain global dynamics in the special case, where β=B=0, in which case we show that such equation exhibits a global period doubling bifurcation.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2014/920410</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Asymptotic properties ; Bifurcation theory ; Bifurcations ; Colleges & universities ; Difference equations ; Dynamics ; Economic models ; Equations, Quadratic ; Equilibrium ; Initial conditions ; Mathematical analysis ; Mathematical research ; Mathematics ; Period doubling ; Stability</subject><ispartof>Discrete Dynamics in Nature and Society, 2014-01, Vol.2014 (2014), p.718-730-266</ispartof><rights>Copyright © 2014 Senada Kalabušić et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Senada Kalabusic et al. Senada Kalabusic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a566t-93e4cf346f2827cc723ec08f92de16e7a762208e94de1b78fa15e2b5924696be3</citedby><cites>FETCH-LOGICAL-a566t-93e4cf346f2827cc723ec08f92de16e7a762208e94de1b78fa15e2b5924696be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1547911468/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1547911468?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,36992,44569,74872</link.rule.ids></links><search><contributor>Abu-Saris, Raghib</contributor><creatorcontrib>Kalabusic, Senada</creatorcontrib><creatorcontrib>Kulenovic, M.R.S</creatorcontrib><creatorcontrib>Mehuljic, M</creatorcontrib><title>Global Period-Doubling Bifurcation of Quadratic Fractional Second Order Difference Equation</title><title>Discrete Dynamics in Nature and Society</title><description>We investigate the local stability and the global asymptotic stability of the difference equation xn+1=αxn2+βxnxn-1+γxn-1/Axn2+Bxnxn-1+Cxn-1, n=0,1,… with nonnegative parameters and initial conditions such that Axn2+Bxnxn-1+Cxn-1>0, for all n≥0. We obtain the local stability of the equilibrium for all values of parameters and give some global asymptotic stability results for some values of the parameters. We also obtain global dynamics in the special case, where β=B=0, in which case we show that such equation exhibits a global period doubling bifurcation.</description><subject>Asymptotic properties</subject><subject>Bifurcation theory</subject><subject>Bifurcations</subject><subject>Colleges & universities</subject><subject>Difference equations</subject><subject>Dynamics</subject><subject>Economic models</subject><subject>Equations, Quadratic</subject><subject>Equilibrium</subject><subject>Initial conditions</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Period doubling</subject><subject>Stability</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc9rFTEQxxdRsFZPnoUFL6JsO5nNZjfH2l8WCn2iguAhZJPJM4_tps2-RfzvnfdWKnqRHCYz-cw386MoXgo4EqJpjhGEPNYIUsCj4kAoaKuua78-5jugqgBRPS2eTdMGAKHTeFB8uxxSb4dyRTkmX52luR_iuC7fxzBnZ7cxjWUK5cfZ-syeKy-ydbso53wil0Zf3mRPuTyLIVCm0VF5fj_vE58XT4IdJnrx2x4WXy7OP59-qK5vLq9OT64r2yi1rXRN0oVaqoAdts61WJODLmj0JBS1tlXI1ZKW7PdtF6xoCPtGo1Ra9VQfFleLrk92Y-5yvLX5p0k2mn0g5bWxmWsfyMjGgwu96vsGpRSyw6a36KGRXoeAirXeLFp3Od3PNG3NbZwcDYMdKc2TEQoBJI8ZGX39D7pJc-bBMNXIVgshVcfU0UKtLf8fx5C2PEE-nm4jz49C5PgJ63VCSS054d2S4HKapkzhoSMBZrdls9uyWbbM9NuF_h5Hb3_E_8CvFpgYoWAf4AY6BM3vq-Xdxhy38U8_K1ZRoEUNUO8VBe6MEkK0ACD-dlrRmbYGg0rVvwDZ5MMp</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Kalabusic, Senada</creator><creator>Kulenovic, M.R.S</creator><creator>Mehuljic, M</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Global Period-Doubling Bifurcation of Quadratic Fractional Second Order Difference Equation</title><author>Kalabusic, Senada ; Kulenovic, M.R.S ; Mehuljic, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a566t-93e4cf346f2827cc723ec08f92de16e7a762208e94de1b78fa15e2b5924696be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Bifurcation theory</topic><topic>Bifurcations</topic><topic>Colleges & universities</topic><topic>Difference equations</topic><topic>Dynamics</topic><topic>Economic models</topic><topic>Equations, Quadratic</topic><topic>Equilibrium</topic><topic>Initial conditions</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Period doubling</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalabusic, Senada</creatorcontrib><creatorcontrib>Kulenovic, M.R.S</creatorcontrib><creatorcontrib>Mehuljic, M</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete Dynamics in Nature and Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalabusic, Senada</au><au>Kulenovic, M.R.S</au><au>Mehuljic, M</au><au>Abu-Saris, Raghib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Period-Doubling Bifurcation of Quadratic Fractional Second Order Difference Equation</atitle><jtitle>Discrete Dynamics in Nature and Society</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>718</spage><epage>730-266</epage><pages>718-730-266</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>We investigate the local stability and the global asymptotic stability of the difference equation xn+1=αxn2+βxnxn-1+γxn-1/Axn2+Bxnxn-1+Cxn-1, n=0,1,… with nonnegative parameters and initial conditions such that Axn2+Bxnxn-1+Cxn-1>0, for all n≥0. We obtain the local stability of the equilibrium for all values of parameters and give some global asymptotic stability results for some values of the parameters. We also obtain global dynamics in the special case, where β=B=0, in which case we show that such equation exhibits a global period doubling bifurcation.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/920410</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1026-0226 |
ispartof | Discrete Dynamics in Nature and Society, 2014-01, Vol.2014 (2014), p.718-730-266 |
issn | 1026-0226 1607-887X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_45d0cfb6bb524414825ba2d054d9ff26 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | Asymptotic properties Bifurcation theory Bifurcations Colleges & universities Difference equations Dynamics Economic models Equations, Quadratic Equilibrium Initial conditions Mathematical analysis Mathematical research Mathematics Period doubling Stability |
title | Global Period-Doubling Bifurcation of Quadratic Fractional Second Order Difference Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Period-Doubling%20Bifurcation%20of%20Quadratic%20Fractional%20Second%20Order%20Difference%20Equation&rft.jtitle=Discrete%20Dynamics%20in%20Nature%20and%20Society&rft.au=Kalabusic,%20Senada&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=718&rft.epage=730-266&rft.pages=718-730-266&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2014/920410&rft_dat=%3Cgale_doaj_%3EA423816494%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a566t-93e4cf346f2827cc723ec08f92de16e7a762208e94de1b78fa15e2b5924696be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547911468&rft_id=info:pmid/&rft_galeid=A423816494&rft_airiti_id=P20160913003_201412_201611170001_201611170001_718_730_266&rfr_iscdi=true |