Loading…
In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells
Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D...
Saved in:
Published in: | Crystals (Basel) 2022-05, Vol.12 (5), p.699 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393 |
container_end_page | |
container_issue | 5 |
container_start_page | 699 |
container_title | Crystals (Basel) |
container_volume | 12 |
creator | Omarova, Zhansaya Yerezhep, Darkhan Aldiyarov, Abdurakhman Tokmoldin, Nurlan |
description | Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95%, FF = 84.05%, VOC = 1.02 V and JSC = 32.60 mA/cm2, providing optimal performance and enhanced resistance to defects. |
doi_str_mv | 10.3390/cryst12050699 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_45f0daee6c2a4cb2978460a2c5ffaef6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_45f0daee6c2a4cb2978460a2c5ffaef6</doaj_id><sourcerecordid>2670144151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhk1JICHJMXdDz25kjS3Fx7K0WcPSBJKcxex4lGjrtbaSsrCH_vfK3VKSuczXwzvDTFFc1-ILQCduKBxiqqVoheq6T8W5FBqqBlp58i4-K65i3IhsWgmt6_Pidz-Vj2505Mt-2nNM7gWT81PpbZleuey3O6Q0Z0s_cvUUcIo7H1K5wgOHWGZyxh44WB-2OBHP7GIJP5bwOPUwd_w-_nQpQ68--b0fEzoqFzyO8bI4tThGvvrnL4rn79-eFstqdX_XL76uKgIhUmUJmLQkVgQSLAOrmlo5QG4MerjlgTRKtKTsmrDDdQei6aQUa82qgQ4uiv6oO3jcmF1wWwwH49GZvwUfXgyG5Ghk07RWDMh5lMSG1rLTt40SKKm1FtmqrPX5qLUL_tdbvpjZ-Lcw5fWNVFrUTVO3daaqI0XBxxjY_p9aCzM_zHx4GPwBlp2LCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670144151</pqid></control><display><type>article</type><title>In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Omarova, Zhansaya ; Yerezhep, Darkhan ; Aldiyarov, Abdurakhman ; Tokmoldin, Nurlan</creator><creatorcontrib>Omarova, Zhansaya ; Yerezhep, Darkhan ; Aldiyarov, Abdurakhman ; Tokmoldin, Nurlan</creatorcontrib><description>Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95%, FF = 84.05%, VOC = 1.02 V and JSC = 32.60 mA/cm2, providing optimal performance and enhanced resistance to defects.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst12050699</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carrier recombination ; CH3NH3SnI3 ; Computer architecture ; Copper oxides ; Defects ; Efficiency ; Electromagnetic absorption ; Glass substrates ; HTL ; modeling ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; SCAPS-1D ; Silicon ; Simulation ; Solar cells ; Titanium dioxide</subject><ispartof>Crystals (Basel), 2022-05, Vol.12 (5), p.699</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393</citedby><cites>FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393</cites><orcidid>0000-0002-0663-0228 ; 0000-0002-5091-7699 ; 0000-0002-2232-2911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670144151/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670144151?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Omarova, Zhansaya</creatorcontrib><creatorcontrib>Yerezhep, Darkhan</creatorcontrib><creatorcontrib>Aldiyarov, Abdurakhman</creatorcontrib><creatorcontrib>Tokmoldin, Nurlan</creatorcontrib><title>In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells</title><title>Crystals (Basel)</title><description>Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95%, FF = 84.05%, VOC = 1.02 V and JSC = 32.60 mA/cm2, providing optimal performance and enhanced resistance to defects.</description><subject>Carrier recombination</subject><subject>CH3NH3SnI3</subject><subject>Computer architecture</subject><subject>Copper oxides</subject><subject>Defects</subject><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Glass substrates</subject><subject>HTL</subject><subject>modeling</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>SCAPS-1D</subject><subject>Silicon</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Titanium dioxide</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1r3DAQhk1JICHJMXdDz25kjS3Fx7K0WcPSBJKcxex4lGjrtbaSsrCH_vfK3VKSuczXwzvDTFFc1-ILQCduKBxiqqVoheq6T8W5FBqqBlp58i4-K65i3IhsWgmt6_Pidz-Vj2505Mt-2nNM7gWT81PpbZleuey3O6Q0Z0s_cvUUcIo7H1K5wgOHWGZyxh44WB-2OBHP7GIJP5bwOPUwd_w-_nQpQ68--b0fEzoqFzyO8bI4tThGvvrnL4rn79-eFstqdX_XL76uKgIhUmUJmLQkVgQSLAOrmlo5QG4MerjlgTRKtKTsmrDDdQei6aQUa82qgQ4uiv6oO3jcmF1wWwwH49GZvwUfXgyG5Ghk07RWDMh5lMSG1rLTt40SKKm1FtmqrPX5qLUL_tdbvpjZ-Lcw5fWNVFrUTVO3daaqI0XBxxjY_p9aCzM_zHx4GPwBlp2LCA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Omarova, Zhansaya</creator><creator>Yerezhep, Darkhan</creator><creator>Aldiyarov, Abdurakhman</creator><creator>Tokmoldin, Nurlan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0663-0228</orcidid><orcidid>https://orcid.org/0000-0002-5091-7699</orcidid><orcidid>https://orcid.org/0000-0002-2232-2911</orcidid></search><sort><creationdate>20220501</creationdate><title>In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells</title><author>Omarova, Zhansaya ; Yerezhep, Darkhan ; Aldiyarov, Abdurakhman ; Tokmoldin, Nurlan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier recombination</topic><topic>CH3NH3SnI3</topic><topic>Computer architecture</topic><topic>Copper oxides</topic><topic>Defects</topic><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Glass substrates</topic><topic>HTL</topic><topic>modeling</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>SCAPS-1D</topic><topic>Silicon</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omarova, Zhansaya</creatorcontrib><creatorcontrib>Yerezhep, Darkhan</creatorcontrib><creatorcontrib>Aldiyarov, Abdurakhman</creatorcontrib><creatorcontrib>Tokmoldin, Nurlan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omarova, Zhansaya</au><au>Yerezhep, Darkhan</au><au>Aldiyarov, Abdurakhman</au><au>Tokmoldin, Nurlan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells</atitle><jtitle>Crystals (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>699</spage><pages>699-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95%, FF = 84.05%, VOC = 1.02 V and JSC = 32.60 mA/cm2, providing optimal performance and enhanced resistance to defects.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst12050699</doi><orcidid>https://orcid.org/0000-0002-0663-0228</orcidid><orcidid>https://orcid.org/0000-0002-5091-7699</orcidid><orcidid>https://orcid.org/0000-0002-2232-2911</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4352 |
ispartof | Crystals (Basel), 2022-05, Vol.12 (5), p.699 |
issn | 2073-4352 2073-4352 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_45f0daee6c2a4cb2978460a2c5ffaef6 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Carrier recombination CH3NH3SnI3 Computer architecture Copper oxides Defects Efficiency Electromagnetic absorption Glass substrates HTL modeling perovskite solar cells Perovskites Photovoltaic cells SCAPS-1D Silicon Simulation Solar cells Titanium dioxide |
title | In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Investigation%20of%20the%20Impact%20of%20Hole-Transport%20Layers%20on%20the%20Performance%20of%20CH3NH3SnI3%20Perovskite%20Photovoltaic%20Cells&rft.jtitle=Crystals%20(Basel)&rft.au=Omarova,%20Zhansaya&rft.date=2022-05-01&rft.volume=12&rft.issue=5&rft.spage=699&rft.pages=699-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst12050699&rft_dat=%3Cproquest_doaj_%3E2670144151%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670144151&rft_id=info:pmid/&rfr_iscdi=true |