Loading…

In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells

Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2022-05, Vol.12 (5), p.699
Main Authors: Omarova, Zhansaya, Yerezhep, Darkhan, Aldiyarov, Abdurakhman, Tokmoldin, Nurlan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393
cites cdi_FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393
container_end_page
container_issue 5
container_start_page 699
container_title Crystals (Basel)
container_volume 12
creator Omarova, Zhansaya
Yerezhep, Darkhan
Aldiyarov, Abdurakhman
Tokmoldin, Nurlan
description Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95%, FF = 84.05%, VOC = 1.02 V and JSC = 32.60 mA/cm2, providing optimal performance and enhanced resistance to defects.
doi_str_mv 10.3390/cryst12050699
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_45f0daee6c2a4cb2978460a2c5ffaef6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_45f0daee6c2a4cb2978460a2c5ffaef6</doaj_id><sourcerecordid>2670144151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhk1JICHJMXdDz25kjS3Fx7K0WcPSBJKcxex4lGjrtbaSsrCH_vfK3VKSuczXwzvDTFFc1-ILQCduKBxiqqVoheq6T8W5FBqqBlp58i4-K65i3IhsWgmt6_Pidz-Vj2505Mt-2nNM7gWT81PpbZleuey3O6Q0Z0s_cvUUcIo7H1K5wgOHWGZyxh44WB-2OBHP7GIJP5bwOPUwd_w-_nQpQ68--b0fEzoqFzyO8bI4tThGvvrnL4rn79-eFstqdX_XL76uKgIhUmUJmLQkVgQSLAOrmlo5QG4MerjlgTRKtKTsmrDDdQei6aQUa82qgQ4uiv6oO3jcmF1wWwwH49GZvwUfXgyG5Ghk07RWDMh5lMSG1rLTt40SKKm1FtmqrPX5qLUL_tdbvpjZ-Lcw5fWNVFrUTVO3daaqI0XBxxjY_p9aCzM_zHx4GPwBlp2LCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670144151</pqid></control><display><type>article</type><title>In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Omarova, Zhansaya ; Yerezhep, Darkhan ; Aldiyarov, Abdurakhman ; Tokmoldin, Nurlan</creator><creatorcontrib>Omarova, Zhansaya ; Yerezhep, Darkhan ; Aldiyarov, Abdurakhman ; Tokmoldin, Nurlan</creatorcontrib><description>Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95%, FF = 84.05%, VOC = 1.02 V and JSC = 32.60 mA/cm2, providing optimal performance and enhanced resistance to defects.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst12050699</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carrier recombination ; CH3NH3SnI3 ; Computer architecture ; Copper oxides ; Defects ; Efficiency ; Electromagnetic absorption ; Glass substrates ; HTL ; modeling ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; SCAPS-1D ; Silicon ; Simulation ; Solar cells ; Titanium dioxide</subject><ispartof>Crystals (Basel), 2022-05, Vol.12 (5), p.699</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393</citedby><cites>FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393</cites><orcidid>0000-0002-0663-0228 ; 0000-0002-5091-7699 ; 0000-0002-2232-2911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670144151/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670144151?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Omarova, Zhansaya</creatorcontrib><creatorcontrib>Yerezhep, Darkhan</creatorcontrib><creatorcontrib>Aldiyarov, Abdurakhman</creatorcontrib><creatorcontrib>Tokmoldin, Nurlan</creatorcontrib><title>In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells</title><title>Crystals (Basel)</title><description>Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95%, FF = 84.05%, VOC = 1.02 V and JSC = 32.60 mA/cm2, providing optimal performance and enhanced resistance to defects.</description><subject>Carrier recombination</subject><subject>CH3NH3SnI3</subject><subject>Computer architecture</subject><subject>Copper oxides</subject><subject>Defects</subject><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Glass substrates</subject><subject>HTL</subject><subject>modeling</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>SCAPS-1D</subject><subject>Silicon</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Titanium dioxide</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1r3DAQhk1JICHJMXdDz25kjS3Fx7K0WcPSBJKcxex4lGjrtbaSsrCH_vfK3VKSuczXwzvDTFFc1-ILQCduKBxiqqVoheq6T8W5FBqqBlp58i4-K65i3IhsWgmt6_Pidz-Vj2505Mt-2nNM7gWT81PpbZleuey3O6Q0Z0s_cvUUcIo7H1K5wgOHWGZyxh44WB-2OBHP7GIJP5bwOPUwd_w-_nQpQ68--b0fEzoqFzyO8bI4tThGvvrnL4rn79-eFstqdX_XL76uKgIhUmUJmLQkVgQSLAOrmlo5QG4MerjlgTRKtKTsmrDDdQei6aQUa82qgQ4uiv6oO3jcmF1wWwwH49GZvwUfXgyG5Ghk07RWDMh5lMSG1rLTt40SKKm1FtmqrPX5qLUL_tdbvpjZ-Lcw5fWNVFrUTVO3daaqI0XBxxjY_p9aCzM_zHx4GPwBlp2LCA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Omarova, Zhansaya</creator><creator>Yerezhep, Darkhan</creator><creator>Aldiyarov, Abdurakhman</creator><creator>Tokmoldin, Nurlan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0663-0228</orcidid><orcidid>https://orcid.org/0000-0002-5091-7699</orcidid><orcidid>https://orcid.org/0000-0002-2232-2911</orcidid></search><sort><creationdate>20220501</creationdate><title>In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells</title><author>Omarova, Zhansaya ; Yerezhep, Darkhan ; Aldiyarov, Abdurakhman ; Tokmoldin, Nurlan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier recombination</topic><topic>CH3NH3SnI3</topic><topic>Computer architecture</topic><topic>Copper oxides</topic><topic>Defects</topic><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Glass substrates</topic><topic>HTL</topic><topic>modeling</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>SCAPS-1D</topic><topic>Silicon</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omarova, Zhansaya</creatorcontrib><creatorcontrib>Yerezhep, Darkhan</creatorcontrib><creatorcontrib>Aldiyarov, Abdurakhman</creatorcontrib><creatorcontrib>Tokmoldin, Nurlan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omarova, Zhansaya</au><au>Yerezhep, Darkhan</au><au>Aldiyarov, Abdurakhman</au><au>Tokmoldin, Nurlan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells</atitle><jtitle>Crystals (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>699</spage><pages>699-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>Perovskite solar cells represent one of the recent success stories in photovoltaics. The device efficiency has been steadily increasing over the past years, but further work is needed to enhance the performance, for example, through the reduction of defects to prevent carrier recombination. SCAPS-1D simulations were performed to assess efficiency limits and identify approaches to decrease the impact of defects, through the selection of an optimal hole-transport material and a hole-collecting electrode. Particular attention was given to evaluation of the influence of bulk defects within light-absorbing CH3NH3SnI3 layers. In addition, the study demonstrates the influence of interface defects at the TiO2/CH3NH3SnI3 (IL1) and CH3NH3SnI3/HTL (IL2) interfaces across the similar range of defect densities. Finally, the optimal device architecture TiO2/CH3NH3SnI3/Cu2O is proposed for the given absorber layer using the readily available Cu2O hole-transporting material with PCE = 27.95%, FF = 84.05%, VOC = 1.02 V and JSC = 32.60 mA/cm2, providing optimal performance and enhanced resistance to defects.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst12050699</doi><orcidid>https://orcid.org/0000-0002-0663-0228</orcidid><orcidid>https://orcid.org/0000-0002-5091-7699</orcidid><orcidid>https://orcid.org/0000-0002-2232-2911</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2022-05, Vol.12 (5), p.699
issn 2073-4352
2073-4352
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_45f0daee6c2a4cb2978460a2c5ffaef6
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Carrier recombination
CH3NH3SnI3
Computer architecture
Copper oxides
Defects
Efficiency
Electromagnetic absorption
Glass substrates
HTL
modeling
perovskite solar cells
Perovskites
Photovoltaic cells
SCAPS-1D
Silicon
Simulation
Solar cells
Titanium dioxide
title In Silico Investigation of the Impact of Hole-Transport Layers on the Performance of CH3NH3SnI3 Perovskite Photovoltaic Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Silico%20Investigation%20of%20the%20Impact%20of%20Hole-Transport%20Layers%20on%20the%20Performance%20of%20CH3NH3SnI3%20Perovskite%20Photovoltaic%20Cells&rft.jtitle=Crystals%20(Basel)&rft.au=Omarova,%20Zhansaya&rft.date=2022-05-01&rft.volume=12&rft.issue=5&rft.spage=699&rft.pages=699-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst12050699&rft_dat=%3Cproquest_doaj_%3E2670144151%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-fc3ec72ce6c323fe3e61c52d3fc3d7d8edc7a2afc6fbca9ab93049220b7e64393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670144151&rft_id=info:pmid/&rfr_iscdi=true