Loading…
Exploring chemo-mechanics of granular material using DEM
Particle Size Distribution (PSD) is one of the prime guiding factors of granular media response. Degradation via weathering is a process, which brings about a gradual shift in the PSD. In nature, chemically sensitive material like calcite undergoes chemo-mechanical degradation bringing about variati...
Saved in:
Published in: | EPJ Web of conferences 2021-01, Vol.249, p.14013 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Particle Size Distribution (PSD) is one of the prime guiding factors of granular media response. Degradation via weathering is a process, which brings about a gradual shift in the PSD. In nature, chemically sensitive material like calcite undergoes chemo-mechanical degradation bringing about variations in their behaviour. In the present study, an experimental investigation is carried out to get insight into the mechanical response during the coupled chemo-mechanical process. The experiments were carried out at two different rates of dissolutions in a custom made 1D compression mould. From the experiments, it is clear that the higher rate of dissolution reduces the lateral earth pressure more than the lower rate. Discrete Element Method (DEM) analyses the micromechanical process behind the observed response from experiments. The results showed a reduction in lateral stress as soon as the dissolution starts. DEM analysis confirms the competing mechanism between grain size reduction and grain rearrangement as the guiding element for the granular media response. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/202124914013 |