Loading…

Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions

•Novel acquisition and reconstruction strategy to increase the signal to noise ratio (SNR) and contrast of diffusion MRI.•Statistical data modelling for image reconstruction with reduced noise bias.•Substantial SNR gain for only moderate increase in acquisition time. Post-mortem diffusion MRI (dMRI)...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2020-11, Vol.221, p.117172-117172, Article 117172
Main Authors: Eichner, Cornelius, Paquette, Michael, Mildner, Toralf, Schlumm, Torsten, Pléh, Kamilla, Samuni, Liran, Crockford, Catherine, Wittig, Roman M., Jäger, Carsten, Möller, Harald E., Friederici, Angela D., Anwander, Alfred
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c552t-e7f24d85c9d8c97151044385d425f23f0baf3ab84aa760919eab2e54d0dd571a3
cites cdi_FETCH-LOGICAL-c552t-e7f24d85c9d8c97151044385d425f23f0baf3ab84aa760919eab2e54d0dd571a3
container_end_page 117172
container_issue
container_start_page 117172
container_title NeuroImage (Orlando, Fla.)
container_volume 221
creator Eichner, Cornelius
Paquette, Michael
Mildner, Toralf
Schlumm, Torsten
Pléh, Kamilla
Samuni, Liran
Crockford, Catherine
Wittig, Roman M.
Jäger, Carsten
Möller, Harald E.
Friederici, Angela D.
Anwander, Alfred
description •Novel acquisition and reconstruction strategy to increase the signal to noise ratio (SNR) and contrast of diffusion MRI.•Statistical data modelling for image reconstruction with reduced noise bias.•Substantial SNR gain for only moderate increase in acquisition time. Post-mortem diffusion MRI (dMRI) enables acquisitions of structural imaging data with otherwise unreachable resolutions - at the expense of longer scanning times. These data are typically acquired using highly segmented image acquisition strategies, thereby resulting in an incomplete signal decay before the MRI encoding continues. Especially in dMRI, with low signal intensities and lengthy contrast encoding, such temporal inefficiency translates into reduced image quality and longer scanning times. This study introduces Multi Echo (ME) acquisitions to dMRI on a human MRI system - a time-efficient approach, which increases SNR (Signal-to-Noise Ratio) and reduces noise bias for dMRI images. The benefit of the introduced ME-dMRI method was validated using numerical Monte Carlo simulations and showcased on a post-mortem brain of a wild chimpanzee. The proposed Maximum Likelihood Estimation echo combination results in an optimal SNR without detectable signal bias. The combined strategy comes at a small price in scanning time (here 30% additional) and leads to a substantial SNR increase (here white matter: ~ 1.6x, equivalent to 2.6 averages, grey matter: ~ 1.9x, equivalent to 3.6 averages) and a general reduction of the noise bias.
doi_str_mv 10.1016/j.neuroimage.2020.117172
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_461ff531732941cb8a1e9bcf7af4c418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811920306583</els_id><doaj_id>oai_doaj_org_article_461ff531732941cb8a1e9bcf7af4c418</doaj_id><sourcerecordid>2424992383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-e7f24d85c9d8c97151044385d425f23f0baf3ab84aa760919eab2e54d0dd571a3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEoqXwCigSG1hk8G9iL0sFdKRBSAjWlmNfZzzK2K2dTNW3xyGlCDasbB9951z7-lZVjdEGI9y-P2wCzCn6ox5gQxApMu5wR55U5xhJ3kjekafLntNGYCzPqhc5HxBCEjPxvDqjpBWkgOfVsA0mgc5g6wwh-8mf_HRf61DOfgh6bKbYhOgz1ElPPtY-1NY7N2cfQ3MHfthPxfvl27YuUhjq4zxOvgGzj7U2t7NfImPIL6tnTo8ZXj2sF9WPTx-_X103u6-ft1eXu8ZwTqYGOkeYFdxIK4zsMMeIMSq4ZYQ7Qh3qtaO6F0zrri2vkaB7ApxZZC3vsKYX1XbNtVEf1E0qLUr3KmqvfgkxDUqnyZsRFGuxc5zijhLJsOmFxiB74zrtmGFYlKx3a9Zej39FXV_u1KIhyjgv3hMu7NuVvUnxdoY8qaPPBsZRB4hzVoQRJiWhghb0zT_oIc6ptHqhWslJoZZAsVImxZwTuMcbYKSWIVAH9WcI1DIEah2CYn39UGDuj2Afjb9_vQAfVgDKT5w8JJWNh2DA-gRmKq3y_6_yE0n8xyg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469522381</pqid></control><display><type>article</type><title>Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions</title><source>Elsevier</source><creator>Eichner, Cornelius ; Paquette, Michael ; Mildner, Toralf ; Schlumm, Torsten ; Pléh, Kamilla ; Samuni, Liran ; Crockford, Catherine ; Wittig, Roman M. ; Jäger, Carsten ; Möller, Harald E. ; Friederici, Angela D. ; Anwander, Alfred</creator><creatorcontrib>Eichner, Cornelius ; Paquette, Michael ; Mildner, Toralf ; Schlumm, Torsten ; Pléh, Kamilla ; Samuni, Liran ; Crockford, Catherine ; Wittig, Roman M. ; Jäger, Carsten ; Möller, Harald E. ; Friederici, Angela D. ; Anwander, Alfred</creatorcontrib><description>•Novel acquisition and reconstruction strategy to increase the signal to noise ratio (SNR) and contrast of diffusion MRI.•Statistical data modelling for image reconstruction with reduced noise bias.•Substantial SNR gain for only moderate increase in acquisition time. Post-mortem diffusion MRI (dMRI) enables acquisitions of structural imaging data with otherwise unreachable resolutions - at the expense of longer scanning times. These data are typically acquired using highly segmented image acquisition strategies, thereby resulting in an incomplete signal decay before the MRI encoding continues. Especially in dMRI, with low signal intensities and lengthy contrast encoding, such temporal inefficiency translates into reduced image quality and longer scanning times. This study introduces Multi Echo (ME) acquisitions to dMRI on a human MRI system - a time-efficient approach, which increases SNR (Signal-to-Noise Ratio) and reduces noise bias for dMRI images. The benefit of the introduced ME-dMRI method was validated using numerical Monte Carlo simulations and showcased on a post-mortem brain of a wild chimpanzee. The proposed Maximum Likelihood Estimation echo combination results in an optimal SNR without detectable signal bias. The combined strategy comes at a small price in scanning time (here 30% additional) and leads to a substantial SNR increase (here white matter: ~ 1.6x, equivalent to 2.6 averages, grey matter: ~ 1.9x, equivalent to 3.6 averages) and a general reduction of the noise bias.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2020.117172</identifier><identifier>PMID: 32682095</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autopsy ; Bias ; Bioengineering ; Chimpanzee ; Computer Simulation ; Diffusion ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion Magnetic Resonance Imaging - standards ; dMRI ; Echo-Planar Imaging - methods ; Echo-Planar Imaging - standards ; Female ; Gray Matter - diagnostic imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - standards ; Imaging ; Life Sciences ; Magnetic resonance imaging ; Monte Carlo Method ; MRI ; Multi-echo ; Neuroimaging ; Neuroimaging - methods ; Neuroimaging - standards ; Neurons and Cognition ; Neurosciences ; Noise ; Noise reduction ; Normal distribution ; Pan troglodytes ; Post-mortem ; Relaxometry ; Reproducibility of Results ; Scanning ; Segmented EPI ; Signal to noise ratio ; SNR ; Standard deviation ; Substantia alba ; Substantia grisea ; White Matter - diagnostic imaging</subject><ispartof>NeuroImage (Orlando, Fla.), 2020-11, Vol.221, p.117172-117172, Article 117172</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Inc.</rights><rights>Copyright Elsevier Limited Nov 1, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-e7f24d85c9d8c97151044385d425f23f0baf3ab84aa760919eab2e54d0dd571a3</citedby><cites>FETCH-LOGICAL-c552t-e7f24d85c9d8c97151044385d425f23f0baf3ab84aa760919eab2e54d0dd571a3</cites><orcidid>0000-0001-6597-5106 ; 0000-0002-5659-1925 ; 0000-0001-9163-1083 ; 0000-0002-4861-4808 ; 0000-0002-2528-5482 ; 0000-0001-6490-4031 ; 0000-0001-7957-6050 ; 0000-0002-8917-3391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32682095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03455941$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eichner, Cornelius</creatorcontrib><creatorcontrib>Paquette, Michael</creatorcontrib><creatorcontrib>Mildner, Toralf</creatorcontrib><creatorcontrib>Schlumm, Torsten</creatorcontrib><creatorcontrib>Pléh, Kamilla</creatorcontrib><creatorcontrib>Samuni, Liran</creatorcontrib><creatorcontrib>Crockford, Catherine</creatorcontrib><creatorcontrib>Wittig, Roman M.</creatorcontrib><creatorcontrib>Jäger, Carsten</creatorcontrib><creatorcontrib>Möller, Harald E.</creatorcontrib><creatorcontrib>Friederici, Angela D.</creatorcontrib><creatorcontrib>Anwander, Alfred</creatorcontrib><title>Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>•Novel acquisition and reconstruction strategy to increase the signal to noise ratio (SNR) and contrast of diffusion MRI.•Statistical data modelling for image reconstruction with reduced noise bias.•Substantial SNR gain for only moderate increase in acquisition time. Post-mortem diffusion MRI (dMRI) enables acquisitions of structural imaging data with otherwise unreachable resolutions - at the expense of longer scanning times. These data are typically acquired using highly segmented image acquisition strategies, thereby resulting in an incomplete signal decay before the MRI encoding continues. Especially in dMRI, with low signal intensities and lengthy contrast encoding, such temporal inefficiency translates into reduced image quality and longer scanning times. This study introduces Multi Echo (ME) acquisitions to dMRI on a human MRI system - a time-efficient approach, which increases SNR (Signal-to-Noise Ratio) and reduces noise bias for dMRI images. The benefit of the introduced ME-dMRI method was validated using numerical Monte Carlo simulations and showcased on a post-mortem brain of a wild chimpanzee. The proposed Maximum Likelihood Estimation echo combination results in an optimal SNR without detectable signal bias. The combined strategy comes at a small price in scanning time (here 30% additional) and leads to a substantial SNR increase (here white matter: ~ 1.6x, equivalent to 2.6 averages, grey matter: ~ 1.9x, equivalent to 3.6 averages) and a general reduction of the noise bias.</description><subject>Animals</subject><subject>Autopsy</subject><subject>Bias</subject><subject>Bioengineering</subject><subject>Chimpanzee</subject><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion Magnetic Resonance Imaging - standards</subject><subject>dMRI</subject><subject>Echo-Planar Imaging - methods</subject><subject>Echo-Planar Imaging - standards</subject><subject>Female</subject><subject>Gray Matter - diagnostic imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - standards</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Magnetic resonance imaging</subject><subject>Monte Carlo Method</subject><subject>MRI</subject><subject>Multi-echo</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neuroimaging - standards</subject><subject>Neurons and Cognition</subject><subject>Neurosciences</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Normal distribution</subject><subject>Pan troglodytes</subject><subject>Post-mortem</subject><subject>Relaxometry</subject><subject>Reproducibility of Results</subject><subject>Scanning</subject><subject>Segmented EPI</subject><subject>Signal to noise ratio</subject><subject>SNR</subject><subject>Standard deviation</subject><subject>Substantia alba</subject><subject>Substantia grisea</subject><subject>White Matter - diagnostic imaging</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFks1u1DAUhSMEoqXwCigSG1hk8G9iL0sFdKRBSAjWlmNfZzzK2K2dTNW3xyGlCDasbB9951z7-lZVjdEGI9y-P2wCzCn6ox5gQxApMu5wR55U5xhJ3kjekafLntNGYCzPqhc5HxBCEjPxvDqjpBWkgOfVsA0mgc5g6wwh-8mf_HRf61DOfgh6bKbYhOgz1ElPPtY-1NY7N2cfQ3MHfthPxfvl27YuUhjq4zxOvgGzj7U2t7NfImPIL6tnTo8ZXj2sF9WPTx-_X103u6-ft1eXu8ZwTqYGOkeYFdxIK4zsMMeIMSq4ZYQ7Qh3qtaO6F0zrri2vkaB7ApxZZC3vsKYX1XbNtVEf1E0qLUr3KmqvfgkxDUqnyZsRFGuxc5zijhLJsOmFxiB74zrtmGFYlKx3a9Zej39FXV_u1KIhyjgv3hMu7NuVvUnxdoY8qaPPBsZRB4hzVoQRJiWhghb0zT_oIc6ptHqhWslJoZZAsVImxZwTuMcbYKSWIVAH9WcI1DIEah2CYn39UGDuj2Afjb9_vQAfVgDKT5w8JJWNh2DA-gRmKq3y_6_yE0n8xyg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Eichner, Cornelius</creator><creator>Paquette, Michael</creator><creator>Mildner, Toralf</creator><creator>Schlumm, Torsten</creator><creator>Pléh, Kamilla</creator><creator>Samuni, Liran</creator><creator>Crockford, Catherine</creator><creator>Wittig, Roman M.</creator><creator>Jäger, Carsten</creator><creator>Möller, Harald E.</creator><creator>Friederici, Angela D.</creator><creator>Anwander, Alfred</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6597-5106</orcidid><orcidid>https://orcid.org/0000-0002-5659-1925</orcidid><orcidid>https://orcid.org/0000-0001-9163-1083</orcidid><orcidid>https://orcid.org/0000-0002-4861-4808</orcidid><orcidid>https://orcid.org/0000-0002-2528-5482</orcidid><orcidid>https://orcid.org/0000-0001-6490-4031</orcidid><orcidid>https://orcid.org/0000-0001-7957-6050</orcidid><orcidid>https://orcid.org/0000-0002-8917-3391</orcidid></search><sort><creationdate>20201101</creationdate><title>Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions</title><author>Eichner, Cornelius ; Paquette, Michael ; Mildner, Toralf ; Schlumm, Torsten ; Pléh, Kamilla ; Samuni, Liran ; Crockford, Catherine ; Wittig, Roman M. ; Jäger, Carsten ; Möller, Harald E. ; Friederici, Angela D. ; Anwander, Alfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-e7f24d85c9d8c97151044385d425f23f0baf3ab84aa760919eab2e54d0dd571a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Autopsy</topic><topic>Bias</topic><topic>Bioengineering</topic><topic>Chimpanzee</topic><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion Magnetic Resonance Imaging - standards</topic><topic>dMRI</topic><topic>Echo-Planar Imaging - methods</topic><topic>Echo-Planar Imaging - standards</topic><topic>Female</topic><topic>Gray Matter - diagnostic imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - standards</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Magnetic resonance imaging</topic><topic>Monte Carlo Method</topic><topic>MRI</topic><topic>Multi-echo</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neuroimaging - standards</topic><topic>Neurons and Cognition</topic><topic>Neurosciences</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Normal distribution</topic><topic>Pan troglodytes</topic><topic>Post-mortem</topic><topic>Relaxometry</topic><topic>Reproducibility of Results</topic><topic>Scanning</topic><topic>Segmented EPI</topic><topic>Signal to noise ratio</topic><topic>SNR</topic><topic>Standard deviation</topic><topic>Substantia alba</topic><topic>Substantia grisea</topic><topic>White Matter - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichner, Cornelius</creatorcontrib><creatorcontrib>Paquette, Michael</creatorcontrib><creatorcontrib>Mildner, Toralf</creatorcontrib><creatorcontrib>Schlumm, Torsten</creatorcontrib><creatorcontrib>Pléh, Kamilla</creatorcontrib><creatorcontrib>Samuni, Liran</creatorcontrib><creatorcontrib>Crockford, Catherine</creatorcontrib><creatorcontrib>Wittig, Roman M.</creatorcontrib><creatorcontrib>Jäger, Carsten</creatorcontrib><creatorcontrib>Möller, Harald E.</creatorcontrib><creatorcontrib>Friederici, Angela D.</creatorcontrib><creatorcontrib>Anwander, Alfred</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichner, Cornelius</au><au>Paquette, Michael</au><au>Mildner, Toralf</au><au>Schlumm, Torsten</au><au>Pléh, Kamilla</au><au>Samuni, Liran</au><au>Crockford, Catherine</au><au>Wittig, Roman M.</au><au>Jäger, Carsten</au><au>Möller, Harald E.</au><au>Friederici, Angela D.</au><au>Anwander, Alfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>221</volume><spage>117172</spage><epage>117172</epage><pages>117172-117172</pages><artnum>117172</artnum><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>•Novel acquisition and reconstruction strategy to increase the signal to noise ratio (SNR) and contrast of diffusion MRI.•Statistical data modelling for image reconstruction with reduced noise bias.•Substantial SNR gain for only moderate increase in acquisition time. Post-mortem diffusion MRI (dMRI) enables acquisitions of structural imaging data with otherwise unreachable resolutions - at the expense of longer scanning times. These data are typically acquired using highly segmented image acquisition strategies, thereby resulting in an incomplete signal decay before the MRI encoding continues. Especially in dMRI, with low signal intensities and lengthy contrast encoding, such temporal inefficiency translates into reduced image quality and longer scanning times. This study introduces Multi Echo (ME) acquisitions to dMRI on a human MRI system - a time-efficient approach, which increases SNR (Signal-to-Noise Ratio) and reduces noise bias for dMRI images. The benefit of the introduced ME-dMRI method was validated using numerical Monte Carlo simulations and showcased on a post-mortem brain of a wild chimpanzee. The proposed Maximum Likelihood Estimation echo combination results in an optimal SNR without detectable signal bias. The combined strategy comes at a small price in scanning time (here 30% additional) and leads to a substantial SNR increase (here white matter: ~ 1.6x, equivalent to 2.6 averages, grey matter: ~ 1.9x, equivalent to 3.6 averages) and a general reduction of the noise bias.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32682095</pmid><doi>10.1016/j.neuroimage.2020.117172</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6597-5106</orcidid><orcidid>https://orcid.org/0000-0002-5659-1925</orcidid><orcidid>https://orcid.org/0000-0001-9163-1083</orcidid><orcidid>https://orcid.org/0000-0002-4861-4808</orcidid><orcidid>https://orcid.org/0000-0002-2528-5482</orcidid><orcidid>https://orcid.org/0000-0001-6490-4031</orcidid><orcidid>https://orcid.org/0000-0001-7957-6050</orcidid><orcidid>https://orcid.org/0000-0002-8917-3391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2020-11, Vol.221, p.117172-117172, Article 117172
issn 1053-8119
1095-9572
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_461ff531732941cb8a1e9bcf7af4c418
source Elsevier
subjects Animals
Autopsy
Bias
Bioengineering
Chimpanzee
Computer Simulation
Diffusion
Diffusion Magnetic Resonance Imaging - methods
Diffusion Magnetic Resonance Imaging - standards
dMRI
Echo-Planar Imaging - methods
Echo-Planar Imaging - standards
Female
Gray Matter - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Imaging
Life Sciences
Magnetic resonance imaging
Monte Carlo Method
MRI
Multi-echo
Neuroimaging
Neuroimaging - methods
Neuroimaging - standards
Neurons and Cognition
Neurosciences
Noise
Noise reduction
Normal distribution
Pan troglodytes
Post-mortem
Relaxometry
Reproducibility of Results
Scanning
Segmented EPI
Signal to noise ratio
SNR
Standard deviation
Substantia alba
Substantia grisea
White Matter - diagnostic imaging
title Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20sensitivity%20and%20signal-to-noise%20ratio%20in%20diffusion-weighted%20MRI%20using%20multi-echo%20acquisitions&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Eichner,%20Cornelius&rft.date=2020-11-01&rft.volume=221&rft.spage=117172&rft.epage=117172&rft.pages=117172-117172&rft.artnum=117172&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2020.117172&rft_dat=%3Cproquest_doaj_%3E2424992383%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c552t-e7f24d85c9d8c97151044385d425f23f0baf3ab84aa760919eab2e54d0dd571a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469522381&rft_id=info:pmid/32682095&rfr_iscdi=true