Loading…
Rat hippocampal CA1 region represents learning-related action and reward events with shorter latency than the lateral entorhinal cortex
The hippocampus and entorhinal cortex are deeply involved in learning and memory. However, little is known how ongoing events are processed in the hippocampal-entorhinal circuit. By recording from head-fixed rats during action-reward learning, here we show that the action and reward events are repre...
Saved in:
Published in: | Communications biology 2023-05, Vol.6 (1), p.584-584, Article 584 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hippocampus and entorhinal cortex are deeply involved in learning and memory. However, little is known how ongoing events are processed in the hippocampal-entorhinal circuit. By recording from head-fixed rats during action-reward learning, here we show that the action and reward events are represented differently in the hippocampal CA1 region and lateral entorhinal cortex (LEC). Although diverse task-related activities developed after learning in both CA1 and LEC, phasic activities related to action and reward events differed in the timing of behavioral event representation. CA1 represented action and reward events almost instantaneously, whereas the superficial and deep layers of the LEC showed a delayed representation of the same events. Interestingly, we also found that ramping activity towards spontaneous action was correlated with waiting time in both regions and exceeded that in the motor cortex. Such functional activities observed in the entorhinal-hippocampal circuits may play a crucial role for animals in utilizing ongoing information to dynamically optimize their behaviors.
Electrophysiological recordings in rats reveal that the hippocampal CA1 region represents learning-related action and reward events faster than the lateral entorhinal cortex. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-023-04958-0 |