Loading…

Opioid modulation of GABA release in the rat inferior colliculus

The inferior colliculus, which receives almost all ascending and descending auditory signals, plays a crucial role in the processing of auditory information. While the majority of the recorded activities in the inferior colliculus are attributed to GABAergic and glutamatergic signalling, other neuro...

Full description

Saved in:
Bibliographic Details
Published in:BMC neuroscience 2004-09, Vol.5 (1), p.31-31, Article 31
Main Authors: Tongjaroenbungam, Walaiporn, Jongkamonwiwat, Nopporn, Cunningham, Joanna, Phansuwan-Pujito, Pansiri, Dodson, Hilary C, Forge, Andrew, Govitrapong, Piyarat, Casalotti, Stefano O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The inferior colliculus, which receives almost all ascending and descending auditory signals, plays a crucial role in the processing of auditory information. While the majority of the recorded activities in the inferior colliculus are attributed to GABAergic and glutamatergic signalling, other neurotransmitter systems are expressed in this brain area including opiate peptides and their receptors which may play a modulatory role in neuronal communication. Using a perfusion protocol we demonstrate that morphine can inhibit KCl-induced release of [3H]GABA from rat inferior colliculus slices. DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin) but not DADLE ([D-Ala2, D-Leu5]-enkephalin or U69593 has the same effect as morphine indicating that micro rather than delta or kappa opioid receptors mediate this action. [3H]GABA release was diminished by 16%, and this was not altered by the protein kinase C inhibitor bisindolylmaleimide I. Immunostaining of inferior colliculus cryosections shows extensive staining for glutamic acid decarboxylase, more limited staining for micro opiate receptors and relatively few neurons co-stained for both proteins. The results suggest that micro-opioid receptor ligands can modify neurotransmitter release in a sub population of GABAergic neurons of the inferior colliculus. This could have important physiological implications in the processing of hearing information and/or other functions attributed to the inferior colliculus such as audiogenic seizures and aversive behaviour.
ISSN:1471-2202
1471-2202
DOI:10.1186/1471-2202-5-31