Loading…

Tolerance and Heavy Metal Accumulation Characteristics of Sasa argenteostriata (Regel) E.G. Camus under Zinc Single Stress and Combined Lead–Zinc Stress

Sasa argenteostriata (Regel) E.G. Camus is a gramineous plant with the potential for phytoremediation. In this study, we aimed to determine its tolerance to zinc stress and combined lead–zinc stress and the effect of zinc on its absorption and accumulation characteristics of lead. The results showed...

Full description

Saved in:
Bibliographic Details
Published in:Toxics (Basel) 2022-08, Vol.10 (8), p.450
Main Authors: Liao, Jiarong, Li, Ningfeng, Yang, Yixiong, Yang, Jing, Tian, Yuan, Luo, Zhenghua, Jiang, Mingyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sasa argenteostriata (Regel) E.G. Camus is a gramineous plant with the potential for phytoremediation. In this study, we aimed to determine its tolerance to zinc stress and combined lead–zinc stress and the effect of zinc on its absorption and accumulation characteristics of lead. The results showed that S. argenteostriata had good tolerance to zinc stress, and S. argenteostriata was not significantly damaged when the zinc stress concentration was 600 mg/L. Under both zinc stress and combined lead–zinc stress, the root was the main organ that accumulated heavy metals in S. argenteostriata. The presence of zinc promoted the absorption of lead by the root of S. argenteostriata, and the lead content in the root under PZ1, PZ2, PZ3 and PZ4 treatments was 2.15, 4.31, 4.47 and 6.01 times that of PZ0 on the 20 days. In the combined lead–zinc stress treatments, the toxicity of heavy metals to S. argenteostriata was mainly caused by lead. Under high concentrations of combined lead–zinc stress (PZ4), the proportion of zinc in the leaf of S. argenteostriata on the 20 days increased, which was used as a tolerance strategy to alleviate the toxicity of lead.
ISSN:2305-6304
2305-6304
DOI:10.3390/toxics10080450