Loading…
Mapping of dwarfing QTL of Ari1327, a semi-dwarf mutant of upland cotton
Upland Cotton (Gossypium hirsutum L.) has few cotton varieties suitable for mechanical harvesting. The plant height of the cultivar is one of the key features that need to modify. Hence, this study was planned to locate the QTL for plant height in a Co γ treated upland cotton semi-dwarf mutant Ari13...
Saved in:
Published in: | BMC plant biology 2022-01, Vol.22 (1), p.5-5, Article 5 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c597t-83ebc56440004134aa842db49cee3c08b980b78f05f700605d9c1baf16ad3f323 |
---|---|
cites | cdi_FETCH-LOGICAL-c597t-83ebc56440004134aa842db49cee3c08b980b78f05f700605d9c1baf16ad3f323 |
container_end_page | 5 |
container_issue | 1 |
container_start_page | 5 |
container_title | BMC plant biology |
container_volume | 22 |
creator | Ma, Chenhui Rehman, Abdul Li, Hong Ge Zhao, Zi Bo Sun, Gaofei Du, Xiong Ming |
description | Upland Cotton (Gossypium hirsutum L.) has few cotton varieties suitable for mechanical harvesting. The plant height of the cultivar is one of the key features that need to modify. Hence, this study was planned to locate the QTL for plant height in a
Co γ treated upland cotton semi-dwarf mutant Ari1327.
Interestingly, bulk segregant analysis (BSA) and genotyping by sequencing (GBS) methods exhibited that candidate QTL was co-located in the region of 5.80-9.66 Mb at D01 chromosome in two F
populations. Using three InDel markers to genotype a population of 1241 individuals confirmed that the offspring's phenotype is consistent with the genotype. Comparative analysis of RNA-seq between the mutant and wild variety exhibited that Gh_D01G0592 was identified as the source of dwarfness from 200 genes. In addition, it was also revealed that the appropriate use of partial separation markers in QTL mapping can escalate linkage information.
Overwhelmingly, the results will provide the basis to reveal the function of candidate genes and the utilization of excellent dwarf genetic resources in the future. |
doi_str_mv | 10.1186/s12870-021-03359-x |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4649b8fba52a4569a128628da056ccea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693692014</galeid><doaj_id>oai_doaj_org_article_4649b8fba52a4569a128628da056ccea</doaj_id><sourcerecordid>A693692014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-83ebc56440004134aa842db49cee3c08b980b78f05f700605d9c1baf16ad3f323</originalsourceid><addsrcrecordid>eNptkkuP0zAUhSMEYh7wB1igSGwYiQzXz9gbpGoETKUiBAxr68axS6o2LnYC5d_jtMMwRcgLP-53j-XjUxTPCFwSouTrRKiqoQJKKmBM6Gr3oDglvCYVpVQ_vLc-Kc5SWgGQWnH9uDhhXNdaU35aXH_A7bbrl2XwZfsTo5_Wn24W034WO8Jo_arEMrlNV-3r5WYcsB-m-rhdY9-WNgxD6J8Ujzyuk3t6O58XX9-9vbm6rhYf38-vZovKCl0PlWKusUJyDgCcMI6oOG0brq1zzIJqtIKmVh6ErwEkiFZb0qAnElvmGWXnxfyg2wZcmW3sNhh_mYCd2R-EuDQYh86uneGS60b5BgVFLqTG7JekqkUQ0lqHWevNQWs7NhvXWtcPEddHoseVvvtmluGHUTWlREMWeHkrEMP30aXBbLpk3Tr74sKYDJVECq21EBl98Q-6CmPss1WZogQkoQB_qSXmB3S9D_leO4mamdRMagqEZ-ryP1Qebf4mG3rnu3x-1HBx1JCZwe2GJY4pmfmXz8csPbA2hpSi83d-EDBT7swhdybnzuxzZ3a56fl9J-9a_gSN_QYNns6-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621061200</pqid></control><display><type>article</type><title>Mapping of dwarfing QTL of Ari1327, a semi-dwarf mutant of upland cotton</title><source>PubMed Central(OA)</source><source>ProQuest Publicly Available Content database</source><creator>Ma, Chenhui ; Rehman, Abdul ; Li, Hong Ge ; Zhao, Zi Bo ; Sun, Gaofei ; Du, Xiong Ming</creator><creatorcontrib>Ma, Chenhui ; Rehman, Abdul ; Li, Hong Ge ; Zhao, Zi Bo ; Sun, Gaofei ; Du, Xiong Ming</creatorcontrib><description>Upland Cotton (Gossypium hirsutum L.) has few cotton varieties suitable for mechanical harvesting. The plant height of the cultivar is one of the key features that need to modify. Hence, this study was planned to locate the QTL for plant height in a
Co γ treated upland cotton semi-dwarf mutant Ari1327.
Interestingly, bulk segregant analysis (BSA) and genotyping by sequencing (GBS) methods exhibited that candidate QTL was co-located in the region of 5.80-9.66 Mb at D01 chromosome in two F
populations. Using three InDel markers to genotype a population of 1241 individuals confirmed that the offspring's phenotype is consistent with the genotype. Comparative analysis of RNA-seq between the mutant and wild variety exhibited that Gh_D01G0592 was identified as the source of dwarfness from 200 genes. In addition, it was also revealed that the appropriate use of partial separation markers in QTL mapping can escalate linkage information.
Overwhelmingly, the results will provide the basis to reveal the function of candidate genes and the utilization of excellent dwarf genetic resources in the future.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-021-03359-x</identifier><identifier>PMID: 34979924</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Biomarkers ; Cell cycle ; Chromosome Mapping ; Chromosomes ; Chromosomes, Plant - genetics ; Comparative analysis ; Cotton ; Cultivars ; Gene mapping ; Genes ; Genetic Linkage ; Genetic resources ; Genotype ; Genotypes ; Genotyping ; Gossypium - genetics ; Gossypium hirsutum ; Mapping ; Methods ; Mutants ; Normal distribution ; Offspring ; Phenotype ; Phenotypes ; Plant Breeding ; Population ; Proteins ; QTL ; Quantitative genetics ; Quantitative Trait Loci ; Research methodology ; Rice ; Segregation distortion ; Semi-dwarf ; Transcription factors</subject><ispartof>BMC plant biology, 2022-01, Vol.22 (1), p.5-5, Article 5</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-83ebc56440004134aa842db49cee3c08b980b78f05f700605d9c1baf16ad3f323</citedby><cites>FETCH-LOGICAL-c597t-83ebc56440004134aa842db49cee3c08b980b78f05f700605d9c1baf16ad3f323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722190/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2621061200?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34979924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Chenhui</creatorcontrib><creatorcontrib>Rehman, Abdul</creatorcontrib><creatorcontrib>Li, Hong Ge</creatorcontrib><creatorcontrib>Zhao, Zi Bo</creatorcontrib><creatorcontrib>Sun, Gaofei</creatorcontrib><creatorcontrib>Du, Xiong Ming</creatorcontrib><title>Mapping of dwarfing QTL of Ari1327, a semi-dwarf mutant of upland cotton</title><title>BMC plant biology</title><addtitle>BMC Plant Biol</addtitle><description>Upland Cotton (Gossypium hirsutum L.) has few cotton varieties suitable for mechanical harvesting. The plant height of the cultivar is one of the key features that need to modify. Hence, this study was planned to locate the QTL for plant height in a
Co γ treated upland cotton semi-dwarf mutant Ari1327.
Interestingly, bulk segregant analysis (BSA) and genotyping by sequencing (GBS) methods exhibited that candidate QTL was co-located in the region of 5.80-9.66 Mb at D01 chromosome in two F
populations. Using three InDel markers to genotype a population of 1241 individuals confirmed that the offspring's phenotype is consistent with the genotype. Comparative analysis of RNA-seq between the mutant and wild variety exhibited that Gh_D01G0592 was identified as the source of dwarfness from 200 genes. In addition, it was also revealed that the appropriate use of partial separation markers in QTL mapping can escalate linkage information.
Overwhelmingly, the results will provide the basis to reveal the function of candidate genes and the utilization of excellent dwarf genetic resources in the future.</description><subject>Analysis</subject><subject>Biomarkers</subject><subject>Cell cycle</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - genetics</subject><subject>Comparative analysis</subject><subject>Cotton</subject><subject>Cultivars</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic Linkage</subject><subject>Genetic resources</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>Gossypium - genetics</subject><subject>Gossypium hirsutum</subject><subject>Mapping</subject><subject>Methods</subject><subject>Mutants</subject><subject>Normal distribution</subject><subject>Offspring</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plant Breeding</subject><subject>Population</subject><subject>Proteins</subject><subject>QTL</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci</subject><subject>Research methodology</subject><subject>Rice</subject><subject>Segregation distortion</subject><subject>Semi-dwarf</subject><subject>Transcription factors</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkkuP0zAUhSMEYh7wB1igSGwYiQzXz9gbpGoETKUiBAxr68axS6o2LnYC5d_jtMMwRcgLP-53j-XjUxTPCFwSouTrRKiqoQJKKmBM6Gr3oDglvCYVpVQ_vLc-Kc5SWgGQWnH9uDhhXNdaU35aXH_A7bbrl2XwZfsTo5_Wn24W034WO8Jo_arEMrlNV-3r5WYcsB-m-rhdY9-WNgxD6J8Ujzyuk3t6O58XX9-9vbm6rhYf38-vZovKCl0PlWKusUJyDgCcMI6oOG0brq1zzIJqtIKmVh6ErwEkiFZb0qAnElvmGWXnxfyg2wZcmW3sNhh_mYCd2R-EuDQYh86uneGS60b5BgVFLqTG7JekqkUQ0lqHWevNQWs7NhvXWtcPEddHoseVvvtmluGHUTWlREMWeHkrEMP30aXBbLpk3Tr74sKYDJVECq21EBl98Q-6CmPss1WZogQkoQB_qSXmB3S9D_leO4mamdRMagqEZ-ryP1Qebf4mG3rnu3x-1HBx1JCZwe2GJY4pmfmXz8csPbA2hpSi83d-EDBT7swhdybnzuxzZ3a56fl9J-9a_gSN_QYNns6-</recordid><startdate>20220103</startdate><enddate>20220103</enddate><creator>Ma, Chenhui</creator><creator>Rehman, Abdul</creator><creator>Li, Hong Ge</creator><creator>Zhao, Zi Bo</creator><creator>Sun, Gaofei</creator><creator>Du, Xiong Ming</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220103</creationdate><title>Mapping of dwarfing QTL of Ari1327, a semi-dwarf mutant of upland cotton</title><author>Ma, Chenhui ; Rehman, Abdul ; Li, Hong Ge ; Zhao, Zi Bo ; Sun, Gaofei ; Du, Xiong Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-83ebc56440004134aa842db49cee3c08b980b78f05f700605d9c1baf16ad3f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Biomarkers</topic><topic>Cell cycle</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - genetics</topic><topic>Comparative analysis</topic><topic>Cotton</topic><topic>Cultivars</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic Linkage</topic><topic>Genetic resources</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>Gossypium - genetics</topic><topic>Gossypium hirsutum</topic><topic>Mapping</topic><topic>Methods</topic><topic>Mutants</topic><topic>Normal distribution</topic><topic>Offspring</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plant Breeding</topic><topic>Population</topic><topic>Proteins</topic><topic>QTL</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci</topic><topic>Research methodology</topic><topic>Rice</topic><topic>Segregation distortion</topic><topic>Semi-dwarf</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Chenhui</creatorcontrib><creatorcontrib>Rehman, Abdul</creatorcontrib><creatorcontrib>Li, Hong Ge</creatorcontrib><creatorcontrib>Zhao, Zi Bo</creatorcontrib><creatorcontrib>Sun, Gaofei</creatorcontrib><creatorcontrib>Du, Xiong Ming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Chenhui</au><au>Rehman, Abdul</au><au>Li, Hong Ge</au><au>Zhao, Zi Bo</au><au>Sun, Gaofei</au><au>Du, Xiong Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping of dwarfing QTL of Ari1327, a semi-dwarf mutant of upland cotton</atitle><jtitle>BMC plant biology</jtitle><addtitle>BMC Plant Biol</addtitle><date>2022-01-03</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>5</spage><epage>5</epage><pages>5-5</pages><artnum>5</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>Upland Cotton (Gossypium hirsutum L.) has few cotton varieties suitable for mechanical harvesting. The plant height of the cultivar is one of the key features that need to modify. Hence, this study was planned to locate the QTL for plant height in a
Co γ treated upland cotton semi-dwarf mutant Ari1327.
Interestingly, bulk segregant analysis (BSA) and genotyping by sequencing (GBS) methods exhibited that candidate QTL was co-located in the region of 5.80-9.66 Mb at D01 chromosome in two F
populations. Using three InDel markers to genotype a population of 1241 individuals confirmed that the offspring's phenotype is consistent with the genotype. Comparative analysis of RNA-seq between the mutant and wild variety exhibited that Gh_D01G0592 was identified as the source of dwarfness from 200 genes. In addition, it was also revealed that the appropriate use of partial separation markers in QTL mapping can escalate linkage information.
Overwhelmingly, the results will provide the basis to reveal the function of candidate genes and the utilization of excellent dwarf genetic resources in the future.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>34979924</pmid><doi>10.1186/s12870-021-03359-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2229 |
ispartof | BMC plant biology, 2022-01, Vol.22 (1), p.5-5, Article 5 |
issn | 1471-2229 1471-2229 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4649b8fba52a4569a128628da056ccea |
source | PubMed Central(OA); ProQuest Publicly Available Content database |
subjects | Analysis Biomarkers Cell cycle Chromosome Mapping Chromosomes Chromosomes, Plant - genetics Comparative analysis Cotton Cultivars Gene mapping Genes Genetic Linkage Genetic resources Genotype Genotypes Genotyping Gossypium - genetics Gossypium hirsutum Mapping Methods Mutants Normal distribution Offspring Phenotype Phenotypes Plant Breeding Population Proteins QTL Quantitative genetics Quantitative Trait Loci Research methodology Rice Segregation distortion Semi-dwarf Transcription factors |
title | Mapping of dwarfing QTL of Ari1327, a semi-dwarf mutant of upland cotton |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20of%20dwarfing%20QTL%20of%20Ari1327,%20a%20semi-dwarf%20mutant%20of%20upland%20cotton&rft.jtitle=BMC%20plant%20biology&rft.au=Ma,%20Chenhui&rft.date=2022-01-03&rft.volume=22&rft.issue=1&rft.spage=5&rft.epage=5&rft.pages=5-5&rft.artnum=5&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-021-03359-x&rft_dat=%3Cgale_doaj_%3EA693692014%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-83ebc56440004134aa842db49cee3c08b980b78f05f700605d9c1baf16ad3f323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621061200&rft_id=info:pmid/34979924&rft_galeid=A693692014&rfr_iscdi=true |