Loading…

Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry

Artificial intelligence (AI) is driving a revolution in chemistry, reshaping the landscape of molecular design. This review explores AI’s pivotal roles in the field of organic synthesis applications. AI accurately predicts reaction outcomes, controls chemical selectivity, simplifies synthesis planni...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence chemistry 2024-06, Vol.2 (1), p.100049, Article 100049
Main Authors: Aal E Ali, Rizvi Syed, Meng, Jiaolong, Khan, Muhammad Ehtisham Ibraheem, Jiang, Xuefeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73
cites cdi_FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73
container_end_page
container_issue 1
container_start_page 100049
container_title Artificial intelligence chemistry
container_volume 2
creator Aal E Ali, Rizvi Syed
Meng, Jiaolong
Khan, Muhammad Ehtisham Ibraheem
Jiang, Xuefeng
description Artificial intelligence (AI) is driving a revolution in chemistry, reshaping the landscape of molecular design. This review explores AI’s pivotal roles in the field of organic synthesis applications. AI accurately predicts reaction outcomes, controls chemical selectivity, simplifies synthesis planning, accelerates catalyst discovery, and fuels material innovation and so on. It seamlessly integrates data-driven algorithms with chemical intuition to redefine molecular design. As AI chemistry advances, it promises accelerated research, sustainability, and innovative solutions to chemistry’s pressing challenges. The fusion of AI and chemistry is poised to shape the field’s future profoundly, offering new horizons in precision and efficiency. This review encapsulates the transformation of AI in chemistry, marking a pivotal moment where algorithms and data converge to revolutionize the world of molecules.
doi_str_mv 10.1016/j.aichem.2024.100049
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_46501e9e749f4a4b9ccc07914a8826e6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2949747724000071</els_id><doaj_id>oai_doaj_org_article_46501e9e749f4a4b9ccc07914a8826e6</doaj_id><sourcerecordid>S2949747724000071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73</originalsourceid><addsrcrecordid>eNp9kc1OwzAQhCMEEgh4Aw5-gRYnce2aAxJC_FQCcYGztdms263SpLIDoheeHadBiBMnW6uZT7M7WXaRy2kuc325ngLjijbTQhYqjaRU9iA7KayyE6OMOfzzP87OY1wnSWGt1FaeZF_PgCtuSTQEoeV2KaD-gBZpQ20fBbeiC0toGUXctf2KIscrcSN8h--RakGf26YL0HOXhF5A6NkzMjTJ2VPT8JISS8B22zDuZXvmkJdjH3Zn2ZGHJtL5z3uavd3fvd4-Tp5eHha3N08TLHRpJxXMUYLNKyxN7TV5M_fSSE8FzcxM5mWpwM6k1LU21lRUoNFUIswqZY2sTXmaLUZu3cHabQNvIOxcB-z2g7SjG7JjQ07pBCRLRlmvQFUWEaWxuYL5vNCkE0uNLAxdjIH8Ly-XbqjErd1YiRsqcWMlyXY92ijt-cEUXEQerlNzIOxTEP4f8A3HH5id</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry</title><source>ScienceDirect</source><creator>Aal E Ali, Rizvi Syed ; Meng, Jiaolong ; Khan, Muhammad Ehtisham Ibraheem ; Jiang, Xuefeng</creator><creatorcontrib>Aal E Ali, Rizvi Syed ; Meng, Jiaolong ; Khan, Muhammad Ehtisham Ibraheem ; Jiang, Xuefeng</creatorcontrib><description>Artificial intelligence (AI) is driving a revolution in chemistry, reshaping the landscape of molecular design. This review explores AI’s pivotal roles in the field of organic synthesis applications. AI accurately predicts reaction outcomes, controls chemical selectivity, simplifies synthesis planning, accelerates catalyst discovery, and fuels material innovation and so on. It seamlessly integrates data-driven algorithms with chemical intuition to redefine molecular design. As AI chemistry advances, it promises accelerated research, sustainability, and innovative solutions to chemistry’s pressing challenges. The fusion of AI and chemistry is poised to shape the field’s future profoundly, offering new horizons in precision and efficiency. This review encapsulates the transformation of AI in chemistry, marking a pivotal moment where algorithms and data converge to revolutionize the world of molecules.</description><identifier>ISSN: 2949-7477</identifier><identifier>EISSN: 2949-7477</identifier><identifier>DOI: 10.1016/j.aichem.2024.100049</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial intelligence ; Catalyst design ; Chemical selectivity ; Material design ; Retrosynthesis prediction</subject><ispartof>Artificial intelligence chemistry, 2024-06, Vol.2 (1), p.100049, Article 100049</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73</citedby><cites>FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2949747724000071$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Aal E Ali, Rizvi Syed</creatorcontrib><creatorcontrib>Meng, Jiaolong</creatorcontrib><creatorcontrib>Khan, Muhammad Ehtisham Ibraheem</creatorcontrib><creatorcontrib>Jiang, Xuefeng</creatorcontrib><title>Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry</title><title>Artificial intelligence chemistry</title><description>Artificial intelligence (AI) is driving a revolution in chemistry, reshaping the landscape of molecular design. This review explores AI’s pivotal roles in the field of organic synthesis applications. AI accurately predicts reaction outcomes, controls chemical selectivity, simplifies synthesis planning, accelerates catalyst discovery, and fuels material innovation and so on. It seamlessly integrates data-driven algorithms with chemical intuition to redefine molecular design. As AI chemistry advances, it promises accelerated research, sustainability, and innovative solutions to chemistry’s pressing challenges. The fusion of AI and chemistry is poised to shape the field’s future profoundly, offering new horizons in precision and efficiency. This review encapsulates the transformation of AI in chemistry, marking a pivotal moment where algorithms and data converge to revolutionize the world of molecules.</description><subject>Artificial intelligence</subject><subject>Catalyst design</subject><subject>Chemical selectivity</subject><subject>Material design</subject><subject>Retrosynthesis prediction</subject><issn>2949-7477</issn><issn>2949-7477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1OwzAQhCMEEgh4Aw5-gRYnce2aAxJC_FQCcYGztdms263SpLIDoheeHadBiBMnW6uZT7M7WXaRy2kuc325ngLjijbTQhYqjaRU9iA7KayyE6OMOfzzP87OY1wnSWGt1FaeZF_PgCtuSTQEoeV2KaD-gBZpQ20fBbeiC0toGUXctf2KIscrcSN8h--RakGf26YL0HOXhF5A6NkzMjTJ2VPT8JISS8B22zDuZXvmkJdjH3Zn2ZGHJtL5z3uavd3fvd4-Tp5eHha3N08TLHRpJxXMUYLNKyxN7TV5M_fSSE8FzcxM5mWpwM6k1LU21lRUoNFUIswqZY2sTXmaLUZu3cHabQNvIOxcB-z2g7SjG7JjQ07pBCRLRlmvQFUWEaWxuYL5vNCkE0uNLAxdjIH8Ly-XbqjErd1YiRsqcWMlyXY92ijt-cEUXEQerlNzIOxTEP4f8A3HH5id</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Aal E Ali, Rizvi Syed</creator><creator>Meng, Jiaolong</creator><creator>Khan, Muhammad Ehtisham Ibraheem</creator><creator>Jiang, Xuefeng</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202406</creationdate><title>Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry</title><author>Aal E Ali, Rizvi Syed ; Meng, Jiaolong ; Khan, Muhammad Ehtisham Ibraheem ; Jiang, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Catalyst design</topic><topic>Chemical selectivity</topic><topic>Material design</topic><topic>Retrosynthesis prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aal E Ali, Rizvi Syed</creatorcontrib><creatorcontrib>Meng, Jiaolong</creatorcontrib><creatorcontrib>Khan, Muhammad Ehtisham Ibraheem</creatorcontrib><creatorcontrib>Jiang, Xuefeng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Artificial intelligence chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aal E Ali, Rizvi Syed</au><au>Meng, Jiaolong</au><au>Khan, Muhammad Ehtisham Ibraheem</au><au>Jiang, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry</atitle><jtitle>Artificial intelligence chemistry</jtitle><date>2024-06</date><risdate>2024</risdate><volume>2</volume><issue>1</issue><spage>100049</spage><pages>100049-</pages><artnum>100049</artnum><issn>2949-7477</issn><eissn>2949-7477</eissn><abstract>Artificial intelligence (AI) is driving a revolution in chemistry, reshaping the landscape of molecular design. This review explores AI’s pivotal roles in the field of organic synthesis applications. AI accurately predicts reaction outcomes, controls chemical selectivity, simplifies synthesis planning, accelerates catalyst discovery, and fuels material innovation and so on. It seamlessly integrates data-driven algorithms with chemical intuition to redefine molecular design. As AI chemistry advances, it promises accelerated research, sustainability, and innovative solutions to chemistry’s pressing challenges. The fusion of AI and chemistry is poised to shape the field’s future profoundly, offering new horizons in precision and efficiency. This review encapsulates the transformation of AI in chemistry, marking a pivotal moment where algorithms and data converge to revolutionize the world of molecules.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.aichem.2024.100049</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2949-7477
ispartof Artificial intelligence chemistry, 2024-06, Vol.2 (1), p.100049, Article 100049
issn 2949-7477
2949-7477
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_46501e9e749f4a4b9ccc07914a8826e6
source ScienceDirect
subjects Artificial intelligence
Catalyst design
Chemical selectivity
Material design
Retrosynthesis prediction
title Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20advancements%20in%20organic%20synthesis:%20A%20focused%20exploration%20of%20artificial%20intelligence%20applications%20in%20chemistry&rft.jtitle=Artificial%20intelligence%20chemistry&rft.au=Aal%20E%20Ali,%20Rizvi%20Syed&rft.date=2024-06&rft.volume=2&rft.issue=1&rft.spage=100049&rft.pages=100049-&rft.artnum=100049&rft.issn=2949-7477&rft.eissn=2949-7477&rft_id=info:doi/10.1016/j.aichem.2024.100049&rft_dat=%3Celsevier_doaj_%3ES2949747724000071%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true