Loading…
Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry
Artificial intelligence (AI) is driving a revolution in chemistry, reshaping the landscape of molecular design. This review explores AI’s pivotal roles in the field of organic synthesis applications. AI accurately predicts reaction outcomes, controls chemical selectivity, simplifies synthesis planni...
Saved in:
Published in: | Artificial intelligence chemistry 2024-06, Vol.2 (1), p.100049, Article 100049 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73 |
container_end_page | |
container_issue | 1 |
container_start_page | 100049 |
container_title | Artificial intelligence chemistry |
container_volume | 2 |
creator | Aal E Ali, Rizvi Syed Meng, Jiaolong Khan, Muhammad Ehtisham Ibraheem Jiang, Xuefeng |
description | Artificial intelligence (AI) is driving a revolution in chemistry, reshaping the landscape of molecular design. This review explores AI’s pivotal roles in the field of organic synthesis applications. AI accurately predicts reaction outcomes, controls chemical selectivity, simplifies synthesis planning, accelerates catalyst discovery, and fuels material innovation and so on. It seamlessly integrates data-driven algorithms with chemical intuition to redefine molecular design. As AI chemistry advances, it promises accelerated research, sustainability, and innovative solutions to chemistry’s pressing challenges. The fusion of AI and chemistry is poised to shape the field’s future profoundly, offering new horizons in precision and efficiency. This review encapsulates the transformation of AI in chemistry, marking a pivotal moment where algorithms and data converge to revolutionize the world of molecules. |
doi_str_mv | 10.1016/j.aichem.2024.100049 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_46501e9e749f4a4b9ccc07914a8826e6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2949747724000071</els_id><doaj_id>oai_doaj_org_article_46501e9e749f4a4b9ccc07914a8826e6</doaj_id><sourcerecordid>S2949747724000071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73</originalsourceid><addsrcrecordid>eNp9kc1OwzAQhCMEEgh4Aw5-gRYnce2aAxJC_FQCcYGztdms263SpLIDoheeHadBiBMnW6uZT7M7WXaRy2kuc325ngLjijbTQhYqjaRU9iA7KayyE6OMOfzzP87OY1wnSWGt1FaeZF_PgCtuSTQEoeV2KaD-gBZpQ20fBbeiC0toGUXctf2KIscrcSN8h--RakGf26YL0HOXhF5A6NkzMjTJ2VPT8JISS8B22zDuZXvmkJdjH3Zn2ZGHJtL5z3uavd3fvd4-Tp5eHha3N08TLHRpJxXMUYLNKyxN7TV5M_fSSE8FzcxM5mWpwM6k1LU21lRUoNFUIswqZY2sTXmaLUZu3cHabQNvIOxcB-z2g7SjG7JjQ07pBCRLRlmvQFUWEaWxuYL5vNCkE0uNLAxdjIH8Ly-XbqjErd1YiRsqcWMlyXY92ijt-cEUXEQerlNzIOxTEP4f8A3HH5id</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry</title><source>ScienceDirect</source><creator>Aal E Ali, Rizvi Syed ; Meng, Jiaolong ; Khan, Muhammad Ehtisham Ibraheem ; Jiang, Xuefeng</creator><creatorcontrib>Aal E Ali, Rizvi Syed ; Meng, Jiaolong ; Khan, Muhammad Ehtisham Ibraheem ; Jiang, Xuefeng</creatorcontrib><description>Artificial intelligence (AI) is driving a revolution in chemistry, reshaping the landscape of molecular design. This review explores AI’s pivotal roles in the field of organic synthesis applications. AI accurately predicts reaction outcomes, controls chemical selectivity, simplifies synthesis planning, accelerates catalyst discovery, and fuels material innovation and so on. It seamlessly integrates data-driven algorithms with chemical intuition to redefine molecular design. As AI chemistry advances, it promises accelerated research, sustainability, and innovative solutions to chemistry’s pressing challenges. The fusion of AI and chemistry is poised to shape the field’s future profoundly, offering new horizons in precision and efficiency. This review encapsulates the transformation of AI in chemistry, marking a pivotal moment where algorithms and data converge to revolutionize the world of molecules.</description><identifier>ISSN: 2949-7477</identifier><identifier>EISSN: 2949-7477</identifier><identifier>DOI: 10.1016/j.aichem.2024.100049</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Artificial intelligence ; Catalyst design ; Chemical selectivity ; Material design ; Retrosynthesis prediction</subject><ispartof>Artificial intelligence chemistry, 2024-06, Vol.2 (1), p.100049, Article 100049</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73</citedby><cites>FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2949747724000071$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Aal E Ali, Rizvi Syed</creatorcontrib><creatorcontrib>Meng, Jiaolong</creatorcontrib><creatorcontrib>Khan, Muhammad Ehtisham Ibraheem</creatorcontrib><creatorcontrib>Jiang, Xuefeng</creatorcontrib><title>Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry</title><title>Artificial intelligence chemistry</title><description>Artificial intelligence (AI) is driving a revolution in chemistry, reshaping the landscape of molecular design. This review explores AI’s pivotal roles in the field of organic synthesis applications. AI accurately predicts reaction outcomes, controls chemical selectivity, simplifies synthesis planning, accelerates catalyst discovery, and fuels material innovation and so on. It seamlessly integrates data-driven algorithms with chemical intuition to redefine molecular design. As AI chemistry advances, it promises accelerated research, sustainability, and innovative solutions to chemistry’s pressing challenges. The fusion of AI and chemistry is poised to shape the field’s future profoundly, offering new horizons in precision and efficiency. This review encapsulates the transformation of AI in chemistry, marking a pivotal moment where algorithms and data converge to revolutionize the world of molecules.</description><subject>Artificial intelligence</subject><subject>Catalyst design</subject><subject>Chemical selectivity</subject><subject>Material design</subject><subject>Retrosynthesis prediction</subject><issn>2949-7477</issn><issn>2949-7477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1OwzAQhCMEEgh4Aw5-gRYnce2aAxJC_FQCcYGztdms263SpLIDoheeHadBiBMnW6uZT7M7WXaRy2kuc325ngLjijbTQhYqjaRU9iA7KayyE6OMOfzzP87OY1wnSWGt1FaeZF_PgCtuSTQEoeV2KaD-gBZpQ20fBbeiC0toGUXctf2KIscrcSN8h--RakGf26YL0HOXhF5A6NkzMjTJ2VPT8JISS8B22zDuZXvmkJdjH3Zn2ZGHJtL5z3uavd3fvd4-Tp5eHha3N08TLHRpJxXMUYLNKyxN7TV5M_fSSE8FzcxM5mWpwM6k1LU21lRUoNFUIswqZY2sTXmaLUZu3cHabQNvIOxcB-z2g7SjG7JjQ07pBCRLRlmvQFUWEaWxuYL5vNCkE0uNLAxdjIH8Ly-XbqjErd1YiRsqcWMlyXY92ijt-cEUXEQerlNzIOxTEP4f8A3HH5id</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Aal E Ali, Rizvi Syed</creator><creator>Meng, Jiaolong</creator><creator>Khan, Muhammad Ehtisham Ibraheem</creator><creator>Jiang, Xuefeng</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202406</creationdate><title>Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry</title><author>Aal E Ali, Rizvi Syed ; Meng, Jiaolong ; Khan, Muhammad Ehtisham Ibraheem ; Jiang, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Catalyst design</topic><topic>Chemical selectivity</topic><topic>Material design</topic><topic>Retrosynthesis prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aal E Ali, Rizvi Syed</creatorcontrib><creatorcontrib>Meng, Jiaolong</creatorcontrib><creatorcontrib>Khan, Muhammad Ehtisham Ibraheem</creatorcontrib><creatorcontrib>Jiang, Xuefeng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Artificial intelligence chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aal E Ali, Rizvi Syed</au><au>Meng, Jiaolong</au><au>Khan, Muhammad Ehtisham Ibraheem</au><au>Jiang, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry</atitle><jtitle>Artificial intelligence chemistry</jtitle><date>2024-06</date><risdate>2024</risdate><volume>2</volume><issue>1</issue><spage>100049</spage><pages>100049-</pages><artnum>100049</artnum><issn>2949-7477</issn><eissn>2949-7477</eissn><abstract>Artificial intelligence (AI) is driving a revolution in chemistry, reshaping the landscape of molecular design. This review explores AI’s pivotal roles in the field of organic synthesis applications. AI accurately predicts reaction outcomes, controls chemical selectivity, simplifies synthesis planning, accelerates catalyst discovery, and fuels material innovation and so on. It seamlessly integrates data-driven algorithms with chemical intuition to redefine molecular design. As AI chemistry advances, it promises accelerated research, sustainability, and innovative solutions to chemistry’s pressing challenges. The fusion of AI and chemistry is poised to shape the field’s future profoundly, offering new horizons in precision and efficiency. This review encapsulates the transformation of AI in chemistry, marking a pivotal moment where algorithms and data converge to revolutionize the world of molecules.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.aichem.2024.100049</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2949-7477 |
ispartof | Artificial intelligence chemistry, 2024-06, Vol.2 (1), p.100049, Article 100049 |
issn | 2949-7477 2949-7477 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_46501e9e749f4a4b9ccc07914a8826e6 |
source | ScienceDirect |
subjects | Artificial intelligence Catalyst design Chemical selectivity Material design Retrosynthesis prediction |
title | Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20advancements%20in%20organic%20synthesis:%20A%20focused%20exploration%20of%20artificial%20intelligence%20applications%20in%20chemistry&rft.jtitle=Artificial%20intelligence%20chemistry&rft.au=Aal%20E%20Ali,%20Rizvi%20Syed&rft.date=2024-06&rft.volume=2&rft.issue=1&rft.spage=100049&rft.pages=100049-&rft.artnum=100049&rft.issn=2949-7477&rft.eissn=2949-7477&rft_id=info:doi/10.1016/j.aichem.2024.100049&rft_dat=%3Celsevier_doaj_%3ES2949747724000071%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2639-ba8c0a91bc37df6ef78f070fe2e57501334a95006d6797be2c76e3ca5b4970d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |