Loading…

Antioxidant and Hypoglycemic Potential of Phytogenic Selenium Nanoparticle- and Light Regime-Mediated In Vitro Caralluma tuberculata Callus Culture Extract

In vitro plant cultures have emerged as a viable source, holding auspicious reservoirs for medicinal applications. This study aims to delineate the antioxidant and hypoglycemic potential of phytosynthesized selenium nanoparticle (SeNP)- and light stress-mediated in vitro callus cultures of Caralluma...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2024-05, Vol.9 (18), p.20101-20118
Main Authors: Ali, Amir, Mashwani, Zia-ur-Rehman, Raja, Naveed Iqbal, Mohammad, Sher, Ahmad, M. Sheeraz, Luna-Arias, Juan Pedro
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In vitro plant cultures have emerged as a viable source, holding auspicious reservoirs for medicinal applications. This study aims to delineate the antioxidant and hypoglycemic potential of phytosynthesized selenium nanoparticle (SeNP)- and light stress-mediated in vitro callus cultures of Caralluma tuberculata extract. The morphophysicochemical characteristics of biogenic SeNPs were assessed through a combination of analytical techniques, including UV–visible spectrophotometry, scanning electron microscopy, energy-dispersive X-rays, Fourier transform infrared spectrometry, and zeta potential spectroscopy. The antioxidative potential of the callus extract 200 and 800 μg/mL concentrations was assessed through various tests and exhibited pronounced scavenging potential in reducing power (26.29%), ABTS + scavenging (42.51%), hydrogen peroxide inhibition (37.26%), hydroxyl radical scavenging (40.23%), and phosphomolybdate (71.66%), respectively. To inspect the hypoglycemic capacity of the callus extract, various assays consistently demonstrated a dosage-dependent relationship, with higher concentrations of the callus extract exerting a potent inhibitory impact on the catalytic sites of the alpha-amylase (78.24%), alpha-glucosidase (71.55%), antisucrase (59.24%), and antilipase (74.26%) enzyme activities, glucose uptake by yeast cells at 5, 10, and 25 mmol/L glucose solution (72.18, 60.58 and 69.33%), and glucose adsorption capacity at 5, 10, and 25 mmol/L glucose solution (74.37, 83.55, and 86.49%), respectively. The findings of this study propose selenium NPs and light-stress-mediated in vitro callus cultures of C. tuberculata potentially operating as competitive inhibitors. The outcomes of the study were exceptional and hold promising implications for future medicinal applications.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c10222