Loading…
Crystal Structure of the Human Copper Chaperone ATOX1 Bound to Zinc Ion
The bioavailability of copper (Cu) in human cells may depend on a complex interplay with zinc (Zn) ions. We investigated the ability of the Zn ion to target the human Cu-chaperone Atox1, a small cytosolic protein capable of anchoring Cu(I), by a conserved surface-exposed Cys-X-X-Cys (CXXC) motif, an...
Saved in:
Published in: | Biomolecules (Basel, Switzerland) Switzerland), 2022-10, Vol.12 (10), p.1494 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The bioavailability of copper (Cu) in human cells may depend on a complex interplay with zinc (Zn) ions. We investigated the ability of the Zn ion to target the human Cu-chaperone Atox1, a small cytosolic protein capable of anchoring Cu(I), by a conserved surface-exposed Cys-X-X-Cys (CXXC) motif, and deliver it to Cu-transporting ATPases in the trans-Golgi network. The crystal structure of Atox1 loaded with Zn displays the metal ion bridging the CXXC motifs of two Atox1 molecules in a homodimer. The identity and location of the Zn ion were confirmed through the anomalous scattering of the metal by collecting X-ray diffraction data near the Zn K-edge. Furthermore, soaking experiments of the Zn-loaded Atox1 crystals with a strong chelating agent, such as EDTA, caused only limited removal of the metal ion from the tetrahedral coordination cage, suggesting a potential role of Atox1 in Zn metabolism and, more generally, that Cu and Zn transport mechanisms could be interlocked in human cells. |
---|---|
ISSN: | 2218-273X 2218-273X |
DOI: | 10.3390/biom12101494 |