Loading…
Ertapenem susceptibility of extended spectrum beta-lactamase-producing organisms
Infections caused by multiply drug resistant organisms such as extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae are increasing. Carbapenems (imipenem and meropenem) are the antibiotics commonly used to treat these agents. There is limited clinical data reg...
Saved in:
Published in: | Annals of clinical microbiology and antimicrobials 2007-06, Vol.6 (1), p.6-6 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Infections caused by multiply drug resistant organisms such as extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae are increasing. Carbapenems (imipenem and meropenem) are the antibiotics commonly used to treat these agents. There is limited clinical data regarding the efficacy of the newest carbapenem, ertapenem, against these organisms. Ertapenem susceptibility of ESBL-producing E. coli and K. pneumoniae clinical isolates were evaluated and compared to imipenem to determine if imipenem susceptibility could be used as a surrogate for ertapenem susceptibility.
100 ESBL isolates (n = 34 E. coli and n = 66 K. pneumoniae) collected from 2005-2006 clinical specimens at WRAMC were identified and tested for susceptibility by Vitek Legacy [bioMerieux, Durham, NC]. Ertapenem susceptibility was performed via epsilometer test (E-test) [AB Biodisk, Solna, Sweden].
100% of ESBL isolates tested were susceptible to ertapenem. 100% of the same isolates were also susceptible to imipenem.
These results, based on 100% susceptibility, suggest that ertapenem may be an alternative to other carbapenems for the treatment of infections caused by ESBL-producing E. coli and K. pneumoniae. Clinical outcomes studies are needed to determine if ertapenem is effective for the treatment of infection caused by these organisms. However, due to lack of resistant isolates, we are unable to conclude whether imipenem susceptibility accurately predicts ertapenem susceptibility. |
---|---|
ISSN: | 1476-0711 1476-0711 |
DOI: | 10.1186/1476-0711-6-6 |