Loading…
Preparation of an exciton condensate of photons on a 53-qubit quantum computer
Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a...
Saved in:
Published in: | Physical review research 2020-11, Vol.2 (4), p.043205, Article 043205 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3 |
container_end_page | |
container_issue | 4 |
container_start_page | 043205 |
container_title | Physical review research |
container_volume | 2 |
creator | Sager, LeeAnn M. Smart, Scott E. Mazziotti, David A. |
description | Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes.While the experimental realization of ground state exciton condensates remained elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our creation of ground state photon condensates has the potential to further the exploration of exciton condensates, and this novel preparation may play a role in realizing efficient room-temperature energy transport. |
doi_str_mv | 10.1103/PhysRevResearch.2.043205 |
format | article |
fullrecord | <record><control><sourceid>doaj_osti_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_468c86fe2d1844d595e033aa18523e4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_468c86fe2d1844d595e033aa18523e4d</doaj_id><sourcerecordid>oai_doaj_org_article_468c86fe2d1844d595e033aa18523e4d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3</originalsourceid><addsrcrecordid>eNpdUdtKAzEUDKJgqf2HxfetObnsZh9FvIFoEX0Ox-SsXbGbmqSif29qRcSncxtmzjCMVcDnAFyeLJaf6Z7e7ykRRrecizlXUnC9xyaiUbIG3aj9P_0hm6X0wjkXGkAZPWG3i0hrjJiHMFahr3Cs6MMNuUwujJ7GhJm2h_UylGWqygErLeu3zdOQq7cNjnmzKtjVepMpHrGDHl8TzX7qlD1enD-cXdU3d5fXZ6c3tdNC5lrovnHYGuhM54EkaoegvGwEStES1x0p4J60END5vgUCx1ttvC5A16Ocsusdrw_4YtdxWGH8tAEH-70I8dlizIN7Jasa40zTk_BglPK608SlRARTXqEiOmXHO66Q8mBTMU9uWcyP5LKFlptOdgVkdiAXQ0qR-l9R4Habhf2XhRV2l4X8ApQwgLU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preparation of an exciton condensate of photons on a 53-qubit quantum computer</title><source>Directory of Open Access Journals</source><creator>Sager, LeeAnn M. ; Smart, Scott E. ; Mazziotti, David A.</creator><creatorcontrib>Sager, LeeAnn M. ; Smart, Scott E. ; Mazziotti, David A. ; Univ. of Chicago, IL (United States)</creatorcontrib><description>Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes.While the experimental realization of ground state exciton condensates remained elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our creation of ground state photon condensates has the potential to further the exploration of exciton condensates, and this novel preparation may play a role in realizing efficient room-temperature energy transport.</description><identifier>ISSN: 2643-1564</identifier><identifier>EISSN: 2643-1564</identifier><identifier>DOI: 10.1103/PhysRevResearch.2.043205</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>ASTRONOMY AND ASTROPHYSICS</subject><ispartof>Physical review research, 2020-11, Vol.2 (4), p.043205, Article 043205</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3</citedby><cites>FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3</cites><orcidid>0000-0002-9938-3886 ; 0000000299383886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1708939$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sager, LeeAnn M.</creatorcontrib><creatorcontrib>Smart, Scott E.</creatorcontrib><creatorcontrib>Mazziotti, David A.</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><title>Preparation of an exciton condensate of photons on a 53-qubit quantum computer</title><title>Physical review research</title><description>Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes.While the experimental realization of ground state exciton condensates remained elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our creation of ground state photon condensates has the potential to further the exploration of exciton condensates, and this novel preparation may play a role in realizing efficient room-temperature energy transport.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><issn>2643-1564</issn><issn>2643-1564</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdUdtKAzEUDKJgqf2HxfetObnsZh9FvIFoEX0Ox-SsXbGbmqSif29qRcSncxtmzjCMVcDnAFyeLJaf6Z7e7ykRRrecizlXUnC9xyaiUbIG3aj9P_0hm6X0wjkXGkAZPWG3i0hrjJiHMFahr3Cs6MMNuUwujJ7GhJm2h_UylGWqygErLeu3zdOQq7cNjnmzKtjVepMpHrGDHl8TzX7qlD1enD-cXdU3d5fXZ6c3tdNC5lrovnHYGuhM54EkaoegvGwEStES1x0p4J60END5vgUCx1ttvC5A16Ocsusdrw_4YtdxWGH8tAEH-70I8dlizIN7Jasa40zTk_BglPK608SlRARTXqEiOmXHO66Q8mBTMU9uWcyP5LKFlptOdgVkdiAXQ0qR-l9R4Habhf2XhRV2l4X8ApQwgLU</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Sager, LeeAnn M.</creator><creator>Smart, Scott E.</creator><creator>Mazziotti, David A.</creator><general>American Physical Society (APS)</general><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9938-3886</orcidid><orcidid>https://orcid.org/0000000299383886</orcidid></search><sort><creationdate>20201109</creationdate><title>Preparation of an exciton condensate of photons on a 53-qubit quantum computer</title><author>Sager, LeeAnn M. ; Smart, Scott E. ; Mazziotti, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sager, LeeAnn M.</creatorcontrib><creatorcontrib>Smart, Scott E.</creatorcontrib><creatorcontrib>Mazziotti, David A.</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Physical review research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sager, LeeAnn M.</au><au>Smart, Scott E.</au><au>Mazziotti, David A.</au><aucorp>Univ. of Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of an exciton condensate of photons on a 53-qubit quantum computer</atitle><jtitle>Physical review research</jtitle><date>2020-11-09</date><risdate>2020</risdate><volume>2</volume><issue>4</issue><spage>043205</spage><pages>043205-</pages><artnum>043205</artnum><issn>2643-1564</issn><eissn>2643-1564</eissn><abstract>Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes.While the experimental realization of ground state exciton condensates remained elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our creation of ground state photon condensates has the potential to further the exploration of exciton condensates, and this novel preparation may play a role in realizing efficient room-temperature energy transport.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevResearch.2.043205</doi><orcidid>https://orcid.org/0000-0002-9938-3886</orcidid><orcidid>https://orcid.org/0000000299383886</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2643-1564 |
ispartof | Physical review research, 2020-11, Vol.2 (4), p.043205, Article 043205 |
issn | 2643-1564 2643-1564 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_468c86fe2d1844d595e033aa18523e4d |
source | Directory of Open Access Journals |
subjects | ASTRONOMY AND ASTROPHYSICS |
title | Preparation of an exciton condensate of photons on a 53-qubit quantum computer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20an%20exciton%20condensate%20of%20photons%20on%20a%2053-qubit%20quantum%20computer&rft.jtitle=Physical%20review%20research&rft.au=Sager,%20LeeAnn%20M.&rft.aucorp=Univ.%20of%20Chicago,%20IL%20(United%20States)&rft.date=2020-11-09&rft.volume=2&rft.issue=4&rft.spage=043205&rft.pages=043205-&rft.artnum=043205&rft.issn=2643-1564&rft.eissn=2643-1564&rft_id=info:doi/10.1103/PhysRevResearch.2.043205&rft_dat=%3Cdoaj_osti_%3Eoai_doaj_org_article_468c86fe2d1844d595e033aa18523e4d%3C/doaj_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |