Loading…

Preparation of an exciton condensate of photons on a 53-qubit quantum computer

Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research 2020-11, Vol.2 (4), p.043205, Article 043205
Main Authors: Sager, LeeAnn M., Smart, Scott E., Mazziotti, David A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3
cites cdi_FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3
container_end_page
container_issue 4
container_start_page 043205
container_title Physical review research
container_volume 2
creator Sager, LeeAnn M.
Smart, Scott E.
Mazziotti, David A.
description Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes.While the experimental realization of ground state exciton condensates remained elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our creation of ground state photon condensates has the potential to further the exploration of exciton condensates, and this novel preparation may play a role in realizing efficient room-temperature energy transport.
doi_str_mv 10.1103/PhysRevResearch.2.043205
format article
fullrecord <record><control><sourceid>doaj_osti_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_468c86fe2d1844d595e033aa18523e4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_468c86fe2d1844d595e033aa18523e4d</doaj_id><sourcerecordid>oai_doaj_org_article_468c86fe2d1844d595e033aa18523e4d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3</originalsourceid><addsrcrecordid>eNpdUdtKAzEUDKJgqf2HxfetObnsZh9FvIFoEX0Ox-SsXbGbmqSif29qRcSncxtmzjCMVcDnAFyeLJaf6Z7e7ykRRrecizlXUnC9xyaiUbIG3aj9P_0hm6X0wjkXGkAZPWG3i0hrjJiHMFahr3Cs6MMNuUwujJ7GhJm2h_UylGWqygErLeu3zdOQq7cNjnmzKtjVepMpHrGDHl8TzX7qlD1enD-cXdU3d5fXZ6c3tdNC5lrovnHYGuhM54EkaoegvGwEStES1x0p4J60END5vgUCx1ttvC5A16Ocsusdrw_4YtdxWGH8tAEH-70I8dlizIN7Jasa40zTk_BglPK608SlRARTXqEiOmXHO66Q8mBTMU9uWcyP5LKFlptOdgVkdiAXQ0qR-l9R4Habhf2XhRV2l4X8ApQwgLU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preparation of an exciton condensate of photons on a 53-qubit quantum computer</title><source>Directory of Open Access Journals</source><creator>Sager, LeeAnn M. ; Smart, Scott E. ; Mazziotti, David A.</creator><creatorcontrib>Sager, LeeAnn M. ; Smart, Scott E. ; Mazziotti, David A. ; Univ. of Chicago, IL (United States)</creatorcontrib><description>Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes.While the experimental realization of ground state exciton condensates remained elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our creation of ground state photon condensates has the potential to further the exploration of exciton condensates, and this novel preparation may play a role in realizing efficient room-temperature energy transport.</description><identifier>ISSN: 2643-1564</identifier><identifier>EISSN: 2643-1564</identifier><identifier>DOI: 10.1103/PhysRevResearch.2.043205</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>ASTRONOMY AND ASTROPHYSICS</subject><ispartof>Physical review research, 2020-11, Vol.2 (4), p.043205, Article 043205</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3</citedby><cites>FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3</cites><orcidid>0000-0002-9938-3886 ; 0000000299383886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2102,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1708939$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sager, LeeAnn M.</creatorcontrib><creatorcontrib>Smart, Scott E.</creatorcontrib><creatorcontrib>Mazziotti, David A.</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><title>Preparation of an exciton condensate of photons on a 53-qubit quantum computer</title><title>Physical review research</title><description>Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes.While the experimental realization of ground state exciton condensates remained elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our creation of ground state photon condensates has the potential to further the exploration of exciton condensates, and this novel preparation may play a role in realizing efficient room-temperature energy transport.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><issn>2643-1564</issn><issn>2643-1564</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdUdtKAzEUDKJgqf2HxfetObnsZh9FvIFoEX0Ox-SsXbGbmqSif29qRcSncxtmzjCMVcDnAFyeLJaf6Z7e7ykRRrecizlXUnC9xyaiUbIG3aj9P_0hm6X0wjkXGkAZPWG3i0hrjJiHMFahr3Cs6MMNuUwujJ7GhJm2h_UylGWqygErLeu3zdOQq7cNjnmzKtjVepMpHrGDHl8TzX7qlD1enD-cXdU3d5fXZ6c3tdNC5lrovnHYGuhM54EkaoegvGwEStES1x0p4J60END5vgUCx1ttvC5A16Ocsusdrw_4YtdxWGH8tAEH-70I8dlizIN7Jasa40zTk_BglPK608SlRARTXqEiOmXHO66Q8mBTMU9uWcyP5LKFlptOdgVkdiAXQ0qR-l9R4Habhf2XhRV2l4X8ApQwgLU</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Sager, LeeAnn M.</creator><creator>Smart, Scott E.</creator><creator>Mazziotti, David A.</creator><general>American Physical Society (APS)</general><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9938-3886</orcidid><orcidid>https://orcid.org/0000000299383886</orcidid></search><sort><creationdate>20201109</creationdate><title>Preparation of an exciton condensate of photons on a 53-qubit quantum computer</title><author>Sager, LeeAnn M. ; Smart, Scott E. ; Mazziotti, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sager, LeeAnn M.</creatorcontrib><creatorcontrib>Smart, Scott E.</creatorcontrib><creatorcontrib>Mazziotti, David A.</creatorcontrib><creatorcontrib>Univ. of Chicago, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>Directory of Open Access Journals</collection><jtitle>Physical review research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sager, LeeAnn M.</au><au>Smart, Scott E.</au><au>Mazziotti, David A.</au><aucorp>Univ. of Chicago, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of an exciton condensate of photons on a 53-qubit quantum computer</atitle><jtitle>Physical review research</jtitle><date>2020-11-09</date><risdate>2020</risdate><volume>2</volume><issue>4</issue><spage>043205</spage><pages>043205-</pages><artnum>043205</artnum><issn>2643-1564</issn><eissn>2643-1564</eissn><abstract>Quantum computation promises an exponential speedup of certain classes of classical calculations through the preparation and manipulation of entangled quantum states. So far, most molecular simulations on quantum computers, however, have been limited to small numbers of particles. Here we prepare a highly entangled state on a 53-qubit IBM quantum computer, representing 53 particles, which reveals the formation of an exciton condensate of photon particles and holes.While the experimental realization of ground state exciton condensates remained elusive for more than 50 years, such condensates were recently achieved for electron-hole pairs in graphene bilayers and metal chalcogenides. Our creation of ground state photon condensates has the potential to further the exploration of exciton condensates, and this novel preparation may play a role in realizing efficient room-temperature energy transport.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevResearch.2.043205</doi><orcidid>https://orcid.org/0000-0002-9938-3886</orcidid><orcidid>https://orcid.org/0000000299383886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2643-1564
ispartof Physical review research, 2020-11, Vol.2 (4), p.043205, Article 043205
issn 2643-1564
2643-1564
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_468c86fe2d1844d595e033aa18523e4d
source Directory of Open Access Journals
subjects ASTRONOMY AND ASTROPHYSICS
title Preparation of an exciton condensate of photons on a 53-qubit quantum computer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20an%20exciton%20condensate%20of%20photons%20on%20a%2053-qubit%20quantum%20computer&rft.jtitle=Physical%20review%20research&rft.au=Sager,%20LeeAnn%20M.&rft.aucorp=Univ.%20of%20Chicago,%20IL%20(United%20States)&rft.date=2020-11-09&rft.volume=2&rft.issue=4&rft.spage=043205&rft.pages=043205-&rft.artnum=043205&rft.issn=2643-1564&rft.eissn=2643-1564&rft_id=info:doi/10.1103/PhysRevResearch.2.043205&rft_dat=%3Cdoaj_osti_%3Eoai_doaj_org_article_468c86fe2d1844d595e033aa18523e4d%3C/doaj_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-25f6ca781989d1e3a5ca14d362a327e059e410de52219df71e1c0758d55cacfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true