Loading…
Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia
Monitoring child development is vital in Indonesia due to its large child population and varying socio-economic and geographical conditions. Malnutrition adversely affects children's growth and development, with ongoing challenges in remote areas despite government efforts. This study addresses...
Saved in:
Published in: | BIO web of conferences 2024-01, Vol.146, p.01082 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 01082 |
container_title | BIO web of conferences |
container_volume | 146 |
creator | Syakur Muhammad Ali Putra Adz Dzikry Pradana Rochman Eka Mala Sari Mufarrohah Fifin Ayu Husni Asmara Yuli Panca Rachmad Aeri |
description | Monitoring child development is vital in Indonesia due to its large child population and varying socio-economic and geographical conditions. Malnutrition adversely affects children's growth and development, with ongoing challenges in remote areas despite government efforts. This study addresses the need for accurate nutritional status classification to improve intervention strategies. This study applies the Support Vector Machine (SVM) classification method to analyze and classify nutritional status of toddlers using data from 473 samples collected from health centers in Bangkalan Regency. The classification includes categories such as Good Nutrition, Excess Nutrition, Obesity, and Risk of Excess Nutrition. The SVM model achieved an accuracy of 76% in predicting nutritional status. |
doi_str_mv | 10.1051/bioconf/202414601082 |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_46cd2a00ba1e4871ae41377e3b2e5f79</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_46cd2a00ba1e4871ae41377e3b2e5f79</doaj_id><sourcerecordid>oai_doaj_org_article_46cd2a00ba1e4871ae41377e3b2e5f79</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1122-193b5c0b4063931afc1fb28c20076d2910e814b9bb101f6d6c4a1572406640133</originalsourceid><addsrcrecordid>eNotkMtKAzEYhQdBsNS-gYs8gGPzJ5mbu1q8FBQ3uh7-3NrUaVKSjNAX8Xltq2dxDnwczuIUxQ3QO6AVzKULKng7Z5QJEDUF2rKLYsIAmlKIqr0qZilt6VEdcNpUk-LnbRyyUwOmRM7urFOYXfAkWJKD1oOJxI85uhPEgaSMeUxkTM6vSRr3-xAz-TYqh0h2qDbOm3uyIAqTOXZHfTgNqbDbjd7lA9kYHPKGKOOziYk4Tx7Qr79wQH9LVl4Hb5LD6-LS4pDM7D-nxefT48fypXx9f14tF6-lBmCshI7LSlEpaM07DmgVWMlaxShtas06oKYFITspgYKtda0EQtWwY78WFDifFqu_XR1w2--j22E89AFdfwYhrnuMp39ML2qlGVIqEYxoG0AjgDeN4ZKZyjYd_wULm3he</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia</title><source>Publicly Available Content Database</source><creator>Syakur Muhammad Ali ; Putra Adz Dzikry Pradana ; Rochman Eka Mala Sari ; Mufarrohah Fifin Ayu ; Husni ; Asmara Yuli Panca ; Rachmad Aeri</creator><creatorcontrib>Syakur Muhammad Ali ; Putra Adz Dzikry Pradana ; Rochman Eka Mala Sari ; Mufarrohah Fifin Ayu ; Husni ; Asmara Yuli Panca ; Rachmad Aeri</creatorcontrib><description>Monitoring child development is vital in Indonesia due to its large child population and varying socio-economic and geographical conditions. Malnutrition adversely affects children's growth and development, with ongoing challenges in remote areas despite government efforts. This study addresses the need for accurate nutritional status classification to improve intervention strategies. This study applies the Support Vector Machine (SVM) classification method to analyze and classify nutritional status of toddlers using data from 473 samples collected from health centers in Bangkalan Regency. The classification includes categories such as Good Nutrition, Excess Nutrition, Obesity, and Risk of Excess Nutrition. The SVM model achieved an accuracy of 76% in predicting nutritional status.</description><identifier>EISSN: 2117-4458</identifier><identifier>DOI: 10.1051/bioconf/202414601082</identifier><language>eng</language><publisher>EDP Sciences</publisher><ispartof>BIO web of conferences, 2024-01, Vol.146, p.01082</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Syakur Muhammad Ali</creatorcontrib><creatorcontrib>Putra Adz Dzikry Pradana</creatorcontrib><creatorcontrib>Rochman Eka Mala Sari</creatorcontrib><creatorcontrib>Mufarrohah Fifin Ayu</creatorcontrib><creatorcontrib>Husni</creatorcontrib><creatorcontrib>Asmara Yuli Panca</creatorcontrib><creatorcontrib>Rachmad Aeri</creatorcontrib><title>Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia</title><title>BIO web of conferences</title><description>Monitoring child development is vital in Indonesia due to its large child population and varying socio-economic and geographical conditions. Malnutrition adversely affects children's growth and development, with ongoing challenges in remote areas despite government efforts. This study addresses the need for accurate nutritional status classification to improve intervention strategies. This study applies the Support Vector Machine (SVM) classification method to analyze and classify nutritional status of toddlers using data from 473 samples collected from health centers in Bangkalan Regency. The classification includes categories such as Good Nutrition, Excess Nutrition, Obesity, and Risk of Excess Nutrition. The SVM model achieved an accuracy of 76% in predicting nutritional status.</description><issn>2117-4458</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotkMtKAzEYhQdBsNS-gYs8gGPzJ5mbu1q8FBQ3uh7-3NrUaVKSjNAX8Xltq2dxDnwczuIUxQ3QO6AVzKULKng7Z5QJEDUF2rKLYsIAmlKIqr0qZilt6VEdcNpUk-LnbRyyUwOmRM7urFOYXfAkWJKD1oOJxI85uhPEgaSMeUxkTM6vSRr3-xAz-TYqh0h2qDbOm3uyIAqTOXZHfTgNqbDbjd7lA9kYHPKGKOOziYk4Tx7Qr79wQH9LVl4Hb5LD6-LS4pDM7D-nxefT48fypXx9f14tF6-lBmCshI7LSlEpaM07DmgVWMlaxShtas06oKYFITspgYKtda0EQtWwY78WFDifFqu_XR1w2--j22E89AFdfwYhrnuMp39ML2qlGVIqEYxoG0AjgDeN4ZKZyjYd_wULm3he</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Syakur Muhammad Ali</creator><creator>Putra Adz Dzikry Pradana</creator><creator>Rochman Eka Mala Sari</creator><creator>Mufarrohah Fifin Ayu</creator><creator>Husni</creator><creator>Asmara Yuli Panca</creator><creator>Rachmad Aeri</creator><general>EDP Sciences</general><scope>DOA</scope></search><sort><creationdate>20240101</creationdate><title>Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia</title><author>Syakur Muhammad Ali ; Putra Adz Dzikry Pradana ; Rochman Eka Mala Sari ; Mufarrohah Fifin Ayu ; Husni ; Asmara Yuli Panca ; Rachmad Aeri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1122-193b5c0b4063931afc1fb28c20076d2910e814b9bb101f6d6c4a1572406640133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syakur Muhammad Ali</creatorcontrib><creatorcontrib>Putra Adz Dzikry Pradana</creatorcontrib><creatorcontrib>Rochman Eka Mala Sari</creatorcontrib><creatorcontrib>Mufarrohah Fifin Ayu</creatorcontrib><creatorcontrib>Husni</creatorcontrib><creatorcontrib>Asmara Yuli Panca</creatorcontrib><creatorcontrib>Rachmad Aeri</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BIO web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syakur Muhammad Ali</au><au>Putra Adz Dzikry Pradana</au><au>Rochman Eka Mala Sari</au><au>Mufarrohah Fifin Ayu</au><au>Husni</au><au>Asmara Yuli Panca</au><au>Rachmad Aeri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia</atitle><jtitle>BIO web of conferences</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>146</volume><spage>01082</spage><pages>01082-</pages><eissn>2117-4458</eissn><abstract>Monitoring child development is vital in Indonesia due to its large child population and varying socio-economic and geographical conditions. Malnutrition adversely affects children's growth and development, with ongoing challenges in remote areas despite government efforts. This study addresses the need for accurate nutritional status classification to improve intervention strategies. This study applies the Support Vector Machine (SVM) classification method to analyze and classify nutritional status of toddlers using data from 473 samples collected from health centers in Bangkalan Regency. The classification includes categories such as Good Nutrition, Excess Nutrition, Obesity, and Risk of Excess Nutrition. The SVM model achieved an accuracy of 76% in predicting nutritional status.</abstract><pub>EDP Sciences</pub><doi>10.1051/bioconf/202414601082</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2117-4458 |
ispartof | BIO web of conferences, 2024-01, Vol.146, p.01082 |
issn | 2117-4458 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_46cd2a00ba1e4871ae41377e3b2e5f79 |
source | Publicly Available Content Database |
title | Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclass%20classification%20of%20toddler%20nutritional%20status%20using%20support%20vector%20machine:%20A%20case%20study%20of%20community%20health%20centers%20in%20Bangkalan,%20Indonesia&rft.jtitle=BIO%20web%20of%20conferences&rft.au=Syakur%20Muhammad%20Ali&rft.date=2024-01-01&rft.volume=146&rft.spage=01082&rft.pages=01082-&rft.eissn=2117-4458&rft_id=info:doi/10.1051/bioconf/202414601082&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_46cd2a00ba1e4871ae41377e3b2e5f79%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d1122-193b5c0b4063931afc1fb28c20076d2910e814b9bb101f6d6c4a1572406640133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |