Loading…

Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia

Monitoring child development is vital in Indonesia due to its large child population and varying socio-economic and geographical conditions. Malnutrition adversely affects children's growth and development, with ongoing challenges in remote areas despite government efforts. This study addresses...

Full description

Saved in:
Bibliographic Details
Published in:BIO web of conferences 2024-01, Vol.146, p.01082
Main Authors: Syakur Muhammad Ali, Putra Adz Dzikry Pradana, Rochman Eka Mala Sari, Mufarrohah Fifin Ayu, Husni, Asmara Yuli Panca, Rachmad Aeri
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 01082
container_title BIO web of conferences
container_volume 146
creator Syakur Muhammad Ali
Putra Adz Dzikry Pradana
Rochman Eka Mala Sari
Mufarrohah Fifin Ayu
Husni
Asmara Yuli Panca
Rachmad Aeri
description Monitoring child development is vital in Indonesia due to its large child population and varying socio-economic and geographical conditions. Malnutrition adversely affects children's growth and development, with ongoing challenges in remote areas despite government efforts. This study addresses the need for accurate nutritional status classification to improve intervention strategies. This study applies the Support Vector Machine (SVM) classification method to analyze and classify nutritional status of toddlers using data from 473 samples collected from health centers in Bangkalan Regency. The classification includes categories such as Good Nutrition, Excess Nutrition, Obesity, and Risk of Excess Nutrition. The SVM model achieved an accuracy of 76% in predicting nutritional status.
doi_str_mv 10.1051/bioconf/202414601082
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_46cd2a00ba1e4871ae41377e3b2e5f79</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_46cd2a00ba1e4871ae41377e3b2e5f79</doaj_id><sourcerecordid>oai_doaj_org_article_46cd2a00ba1e4871ae41377e3b2e5f79</sourcerecordid><originalsourceid>FETCH-LOGICAL-d1122-193b5c0b4063931afc1fb28c20076d2910e814b9bb101f6d6c4a1572406640133</originalsourceid><addsrcrecordid>eNotkMtKAzEYhQdBsNS-gYs8gGPzJ5mbu1q8FBQ3uh7-3NrUaVKSjNAX8Xltq2dxDnwczuIUxQ3QO6AVzKULKng7Z5QJEDUF2rKLYsIAmlKIqr0qZilt6VEdcNpUk-LnbRyyUwOmRM7urFOYXfAkWJKD1oOJxI85uhPEgaSMeUxkTM6vSRr3-xAz-TYqh0h2qDbOm3uyIAqTOXZHfTgNqbDbjd7lA9kYHPKGKOOziYk4Tx7Qr79wQH9LVl4Hb5LD6-LS4pDM7D-nxefT48fypXx9f14tF6-lBmCshI7LSlEpaM07DmgVWMlaxShtas06oKYFITspgYKtda0EQtWwY78WFDifFqu_XR1w2--j22E89AFdfwYhrnuMp39ML2qlGVIqEYxoG0AjgDeN4ZKZyjYd_wULm3he</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia</title><source>Publicly Available Content Database</source><creator>Syakur Muhammad Ali ; Putra Adz Dzikry Pradana ; Rochman Eka Mala Sari ; Mufarrohah Fifin Ayu ; Husni ; Asmara Yuli Panca ; Rachmad Aeri</creator><creatorcontrib>Syakur Muhammad Ali ; Putra Adz Dzikry Pradana ; Rochman Eka Mala Sari ; Mufarrohah Fifin Ayu ; Husni ; Asmara Yuli Panca ; Rachmad Aeri</creatorcontrib><description>Monitoring child development is vital in Indonesia due to its large child population and varying socio-economic and geographical conditions. Malnutrition adversely affects children's growth and development, with ongoing challenges in remote areas despite government efforts. This study addresses the need for accurate nutritional status classification to improve intervention strategies. This study applies the Support Vector Machine (SVM) classification method to analyze and classify nutritional status of toddlers using data from 473 samples collected from health centers in Bangkalan Regency. The classification includes categories such as Good Nutrition, Excess Nutrition, Obesity, and Risk of Excess Nutrition. The SVM model achieved an accuracy of 76% in predicting nutritional status.</description><identifier>EISSN: 2117-4458</identifier><identifier>DOI: 10.1051/bioconf/202414601082</identifier><language>eng</language><publisher>EDP Sciences</publisher><ispartof>BIO web of conferences, 2024-01, Vol.146, p.01082</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Syakur Muhammad Ali</creatorcontrib><creatorcontrib>Putra Adz Dzikry Pradana</creatorcontrib><creatorcontrib>Rochman Eka Mala Sari</creatorcontrib><creatorcontrib>Mufarrohah Fifin Ayu</creatorcontrib><creatorcontrib>Husni</creatorcontrib><creatorcontrib>Asmara Yuli Panca</creatorcontrib><creatorcontrib>Rachmad Aeri</creatorcontrib><title>Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia</title><title>BIO web of conferences</title><description>Monitoring child development is vital in Indonesia due to its large child population and varying socio-economic and geographical conditions. Malnutrition adversely affects children's growth and development, with ongoing challenges in remote areas despite government efforts. This study addresses the need for accurate nutritional status classification to improve intervention strategies. This study applies the Support Vector Machine (SVM) classification method to analyze and classify nutritional status of toddlers using data from 473 samples collected from health centers in Bangkalan Regency. The classification includes categories such as Good Nutrition, Excess Nutrition, Obesity, and Risk of Excess Nutrition. The SVM model achieved an accuracy of 76% in predicting nutritional status.</description><issn>2117-4458</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotkMtKAzEYhQdBsNS-gYs8gGPzJ5mbu1q8FBQ3uh7-3NrUaVKSjNAX8Xltq2dxDnwczuIUxQ3QO6AVzKULKng7Z5QJEDUF2rKLYsIAmlKIqr0qZilt6VEdcNpUk-LnbRyyUwOmRM7urFOYXfAkWJKD1oOJxI85uhPEgaSMeUxkTM6vSRr3-xAz-TYqh0h2qDbOm3uyIAqTOXZHfTgNqbDbjd7lA9kYHPKGKOOziYk4Tx7Qr79wQH9LVl4Hb5LD6-LS4pDM7D-nxefT48fypXx9f14tF6-lBmCshI7LSlEpaM07DmgVWMlaxShtas06oKYFITspgYKtda0EQtWwY78WFDifFqu_XR1w2--j22E89AFdfwYhrnuMp39ML2qlGVIqEYxoG0AjgDeN4ZKZyjYd_wULm3he</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Syakur Muhammad Ali</creator><creator>Putra Adz Dzikry Pradana</creator><creator>Rochman Eka Mala Sari</creator><creator>Mufarrohah Fifin Ayu</creator><creator>Husni</creator><creator>Asmara Yuli Panca</creator><creator>Rachmad Aeri</creator><general>EDP Sciences</general><scope>DOA</scope></search><sort><creationdate>20240101</creationdate><title>Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia</title><author>Syakur Muhammad Ali ; Putra Adz Dzikry Pradana ; Rochman Eka Mala Sari ; Mufarrohah Fifin Ayu ; Husni ; Asmara Yuli Panca ; Rachmad Aeri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d1122-193b5c0b4063931afc1fb28c20076d2910e814b9bb101f6d6c4a1572406640133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Syakur Muhammad Ali</creatorcontrib><creatorcontrib>Putra Adz Dzikry Pradana</creatorcontrib><creatorcontrib>Rochman Eka Mala Sari</creatorcontrib><creatorcontrib>Mufarrohah Fifin Ayu</creatorcontrib><creatorcontrib>Husni</creatorcontrib><creatorcontrib>Asmara Yuli Panca</creatorcontrib><creatorcontrib>Rachmad Aeri</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BIO web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Syakur Muhammad Ali</au><au>Putra Adz Dzikry Pradana</au><au>Rochman Eka Mala Sari</au><au>Mufarrohah Fifin Ayu</au><au>Husni</au><au>Asmara Yuli Panca</au><au>Rachmad Aeri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia</atitle><jtitle>BIO web of conferences</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>146</volume><spage>01082</spage><pages>01082-</pages><eissn>2117-4458</eissn><abstract>Monitoring child development is vital in Indonesia due to its large child population and varying socio-economic and geographical conditions. Malnutrition adversely affects children's growth and development, with ongoing challenges in remote areas despite government efforts. This study addresses the need for accurate nutritional status classification to improve intervention strategies. This study applies the Support Vector Machine (SVM) classification method to analyze and classify nutritional status of toddlers using data from 473 samples collected from health centers in Bangkalan Regency. The classification includes categories such as Good Nutrition, Excess Nutrition, Obesity, and Risk of Excess Nutrition. The SVM model achieved an accuracy of 76% in predicting nutritional status.</abstract><pub>EDP Sciences</pub><doi>10.1051/bioconf/202414601082</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2117-4458
ispartof BIO web of conferences, 2024-01, Vol.146, p.01082
issn 2117-4458
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_46cd2a00ba1e4871ae41377e3b2e5f79
source Publicly Available Content Database
title Multiclass classification of toddler nutritional status using support vector machine: A case study of community health centers in Bangkalan, Indonesia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclass%20classification%20of%20toddler%20nutritional%20status%20using%20support%20vector%20machine:%20A%20case%20study%20of%20community%20health%20centers%20in%20Bangkalan,%20Indonesia&rft.jtitle=BIO%20web%20of%20conferences&rft.au=Syakur%20Muhammad%20Ali&rft.date=2024-01-01&rft.volume=146&rft.spage=01082&rft.pages=01082-&rft.eissn=2117-4458&rft_id=info:doi/10.1051/bioconf/202414601082&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_46cd2a00ba1e4871ae41377e3b2e5f79%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d1122-193b5c0b4063931afc1fb28c20076d2910e814b9bb101f6d6c4a1572406640133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true