Loading…

Retrieving the Motion of Beaufort Sea Ice Using Brightness Temperature Data from FY-3D Microwave Radiometer Imager

Sea ice is an important marine phenomenon in the Arctic region, and it is of great importance to study the motion of Arctic sea ice in the present day when its melting is accelerated by global warming. This study proposes a method to retrieve the motion of sea ice based on the maximum cross-correlat...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2022-10, Vol.22 (21), p.8298
Main Authors: Ni, Kun, Chen, Haihua, Li, Lele, Meng, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sea ice is an important marine phenomenon in the Arctic region, and it is of great importance to study the motion of Arctic sea ice in the present day when its melting is accelerated by global warming. This study proposes a method to retrieve the motion of sea ice based on the maximum cross-correlation (MCC) and the successive correction method (SCM). The proposed method can apply different scales of search ranges to template matching according to the location of sea ice in the Arctic area. In addition, the data assimilation method can assign different weights to different data. We used 36.5 GHz and 89 GHz brightness temperature (Tb) data from the microwave radiometer imager (MWRI) aboard the Fengyun-3D (FY-3D) satellite, for the first time in the literature, to retrieve the sea ice motion in the Beaufort Sea from January to April 2019. The retrieved sea ice motion results were in good agreement with those obtained from the motion of the buoys. Compared with the data from the buoys, the root mean-squared error (RMSE) of the sea ice motion retrieved from FY-3D/MWRI Tb data was 1.1418 cm/s in the zonal direction and 1.0481 cm/s in the meridional direction, and the mean absolute error (MAE) between them was 0.7166 cm/s in the zonal direction and 0.6777 cm/s in the meridional direction. The RMSE between the sea ice motion obtained from the National Snow and Ice Data Center (NSIDC) and the motion of the buoys was 0.9515 cm/s in the zonal direction and 0.67003 cm/s in the meridional direction, and the MAE between them was 0.6576 cm/s in the zonal direction and 0.4922 cm/s in the meridional direction. The RMSE of daily average velocity from the FY-3D/MWRI results and NSIDC data product was 2.2726 cm/s in zonal and 1.9270 cm/s in meridional, and the MAE was 1.5103 cm/s in zonal and 1.1071 cm/s in zonal. The density of the merged data was higher than that obtained from a single polarization or frequency in this paper. The results indicate that FY-3D/MWRI Tb data can retrieve the sea ice motion successfully.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22218298