Loading…
Multi-Parameter Statistical Analysis of K, Th, and U Concentrations in Eastern Senegal: Implications for the Interpretation of Airborne Radiometrics
In geological mapping, maps of K, Th, and U concentrations provided by airborne radiometric surveys are widely used to delineate geological units in tropical regions from the few rare outcrops. Indeed, thanks to their specific geochemical properties and behaviors, K, Th, and U allow us to trace geol...
Saved in:
Published in: | Geosciences (Basel) 2023-09, Vol.13 (9), p.263 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In geological mapping, maps of K, Th, and U concentrations provided by airborne radiometric surveys are widely used to delineate geological units in tropical regions from the few rare outcrops. Indeed, thanks to their specific geochemical properties and behaviors, K, Th, and U allow us to trace geological processes. However, the combination of the concentrations of these radioelements does not allow us to determine the lithology in a unique way. We examined the potential of delineating the statistical parameters of K, Th, and U concentrations for geological mapping using the purpose airborne radiometric data in eastern Senegal. The mean, standard deviation, skewness, and kurtosis were calculated and mapped at a baseline of 3000 m. We noted the narrow dispersion of skewness and kurtosis values away from the expected curve for the log-normal distribution, implying that log-normal distributions dominate at the scale of analysis. The higher moments (kurtosis and skewness) varied more over shorter distances than lower order moments (mean and standard deviation). Mixtures of log-normal distributions across some lithological contacts with large differences in statistical parameters may account for this behavior. The area covered by the airborne radiometric data was classified into eight units according to the statistical parameters. The eight clusters do not show obvious correlations with geological units, but they may be interpreted in terms of the superposition of lithology and recent superficial processes (erosion and weathering). |
---|---|
ISSN: | 2076-3263 2076-3263 |
DOI: | 10.3390/geosciences13090263 |