Loading…

Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns

Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest compo...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2012-04, Vol.13 (1), p.137-137, Article 137
Main Authors: Domingues, Douglas S, Cruz, Guilherme M Q, Metcalfe, Cushla J, Nogueira, Fabio T S, Vicentini, Renato, Alves, Cristiane de S, Van Sluys, Marie-Anne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b750t-f8021b57953d018aa72e7ffb0fdf8210bfc7c52d356ba4eaccc45fa2fec2e59c3
cites cdi_FETCH-LOGICAL-b750t-f8021b57953d018aa72e7ffb0fdf8210bfc7c52d356ba4eaccc45fa2fec2e59c3
container_end_page 137
container_issue 1
container_start_page 137
container_title BMC genomics
container_volume 13
creator Domingues, Douglas S
Cruz, Guilherme M Q
Metcalfe, Cushla J
Nogueira, Fabio T S
Vicentini, Renato
Alves, Cristiane de S
Van Sluys, Marie-Anne
description Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.
doi_str_mv 10.1186/1471-2164-13-137
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_477069990556487a9082c250b3c01b45</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534116502</galeid><doaj_id>oai_doaj_org_article_477069990556487a9082c250b3c01b45</doaj_id><sourcerecordid>A534116502</sourcerecordid><originalsourceid>FETCH-LOGICAL-b750t-f8021b57953d018aa72e7ffb0fdf8210bfc7c52d356ba4eaccc45fa2fec2e59c3</originalsourceid><addsrcrecordid>eNqFk12L1DAUhoso7rp675UEvNGLrvlomvZGGAY_BgaEdb0OaZrMZkyTMUkH59-b7qzjVlYkIQknz3kJ5z0pipcIXiLU1O9QxVCJUV2ViOTJHhXnp9Dje-ez4lmMWwgRazB9WpxhTCGrIDwvvi-csIdoIvAa7KxwCayvr8qgUvApCBd3PnoXgUgg3SigjVNllMLmoxiMPQCr9sqCkFdhIzCuN3vTj8KCwVslRysC2ImUVHDxefFEZ0i9uNsvim8fP1wvP5frL59Wy8W67BiFqdQNxKijrKWkh6gRgmHFtO6g7nWDEey0ZJLintC6E5USUsqKaoG1kljRVpKLYnXU7b3Y8l0wgwgH7oXhtwEfNlyEZKRVvGIM1m3bQkrrqmGihQ2WuTgdkRB1Fc1a749au7EbVC-Vy1WxM9H5jTM3fOP3nBCKcTsJLI8CnfH_EJjfSD_wyTg-GccRyZNllTd3zwj-x6hi4oOJUtlsmPJjzAxuKEJV2_wfhahCKNs_ve31X-jWjyE3xC1FaoZIW_-hNtl2bpyeGkNOonxBSdaqKcSZunyAyqNXg5HeKW1yfJbwdpaQmaR-po0YY-Srr1dzFh5ZGXyMQelT_RDk0094qGKv7ht3Svjd-uQXoosCBw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1013671396</pqid></control><display><type>article</type><title>Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Domingues, Douglas S ; Cruz, Guilherme M Q ; Metcalfe, Cushla J ; Nogueira, Fabio T S ; Vicentini, Renato ; Alves, Cristiane de S ; Van Sluys, Marie-Anne</creator><creatorcontrib>Domingues, Douglas S ; Cruz, Guilherme M Q ; Metcalfe, Cushla J ; Nogueira, Fabio T S ; Vicentini, Renato ; Alves, Cristiane de S ; Van Sluys, Marie-Anne</creatorcontrib><description>Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/1471-2164-13-137</identifier><identifier>PMID: 22507400</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Cellulase ; Chromosomes ; Chromosomes, Artificial, Bacterial - genetics ; Crops ; Energy ; Epigenetic ; Epigenetic inheritance ; Ethanol ; Euchromatin ; Evolution ; Evolution, Molecular ; expressed sequence tags ; Family ; FISH ; Fluorescence in situ hybridization ; Gene amplification ; Gene expression ; Gene mapping ; Gene silencing ; Genes ; Genetic aspects ; Genetic engineering ; Genetic Variation - genetics ; Genetics ; Genome ; Genome, Plant - genetics ; Genomes ; Genomics ; Heterochromatin ; Long terminal repeat ; LTR Retrotransposons ; Metaphase - genetics ; Phylogeny ; Physiological aspects ; Plant genetics ; Polymerase chain reaction ; Polyploidy ; Retroelements - genetics ; Retrotransposons ; RNA, Plant - genetics ; RNA, Untranslated - genetics ; Saccharum - cytology ; Saccharum - genetics ; Small RNA ; Sugar ; Sugarcane ; Terminal Repeat Sequences - genetics ; Transcription ; Transcription, Genetic - genetics ; Transposons</subject><ispartof>BMC genomics, 2012-04, Vol.13 (1), p.137-137, Article 137</ispartof><rights>COPYRIGHT 2012 BioMed Central Ltd.</rights><rights>2012 Domingues et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright ©2012 Domingues et al; licensee BioMed Central Ltd. 2012 Domingues et al; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b750t-f8021b57953d018aa72e7ffb0fdf8210bfc7c52d356ba4eaccc45fa2fec2e59c3</citedby><cites>FETCH-LOGICAL-b750t-f8021b57953d018aa72e7ffb0fdf8210bfc7c52d356ba4eaccc45fa2fec2e59c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352295/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1013671396?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22507400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Domingues, Douglas S</creatorcontrib><creatorcontrib>Cruz, Guilherme M Q</creatorcontrib><creatorcontrib>Metcalfe, Cushla J</creatorcontrib><creatorcontrib>Nogueira, Fabio T S</creatorcontrib><creatorcontrib>Vicentini, Renato</creatorcontrib><creatorcontrib>Alves, Cristiane de S</creatorcontrib><creatorcontrib>Van Sluys, Marie-Anne</creatorcontrib><title>Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.</description><subject>Cellulase</subject><subject>Chromosomes</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Crops</subject><subject>Energy</subject><subject>Epigenetic</subject><subject>Epigenetic inheritance</subject><subject>Ethanol</subject><subject>Euchromatin</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>expressed sequence tags</subject><subject>Family</subject><subject>FISH</subject><subject>Fluorescence in situ hybridization</subject><subject>Gene amplification</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic Variation - genetics</subject><subject>Genetics</subject><subject>Genome</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Heterochromatin</subject><subject>Long terminal repeat</subject><subject>LTR Retrotransposons</subject><subject>Metaphase - genetics</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Plant genetics</subject><subject>Polymerase chain reaction</subject><subject>Polyploidy</subject><subject>Retroelements - genetics</subject><subject>Retrotransposons</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Untranslated - genetics</subject><subject>Saccharum - cytology</subject><subject>Saccharum - genetics</subject><subject>Small RNA</subject><subject>Sugar</subject><subject>Sugarcane</subject><subject>Terminal Repeat Sequences - genetics</subject><subject>Transcription</subject><subject>Transcription, Genetic - genetics</subject><subject>Transposons</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFk12L1DAUhoso7rp675UEvNGLrvlomvZGGAY_BgaEdb0OaZrMZkyTMUkH59-b7qzjVlYkIQknz3kJ5z0pipcIXiLU1O9QxVCJUV2ViOTJHhXnp9Dje-ez4lmMWwgRazB9WpxhTCGrIDwvvi-csIdoIvAa7KxwCayvr8qgUvApCBd3PnoXgUgg3SigjVNllMLmoxiMPQCr9sqCkFdhIzCuN3vTj8KCwVslRysC2ImUVHDxefFEZ0i9uNsvim8fP1wvP5frL59Wy8W67BiFqdQNxKijrKWkh6gRgmHFtO6g7nWDEey0ZJLintC6E5USUsqKaoG1kljRVpKLYnXU7b3Y8l0wgwgH7oXhtwEfNlyEZKRVvGIM1m3bQkrrqmGihQ2WuTgdkRB1Fc1a749au7EbVC-Vy1WxM9H5jTM3fOP3nBCKcTsJLI8CnfH_EJjfSD_wyTg-GccRyZNllTd3zwj-x6hi4oOJUtlsmPJjzAxuKEJV2_wfhahCKNs_ve31X-jWjyE3xC1FaoZIW_-hNtl2bpyeGkNOonxBSdaqKcSZunyAyqNXg5HeKW1yfJbwdpaQmaR-po0YY-Srr1dzFh5ZGXyMQelT_RDk0094qGKv7ht3Svjd-uQXoosCBw</recordid><startdate>20120416</startdate><enddate>20120416</enddate><creator>Domingues, Douglas S</creator><creator>Cruz, Guilherme M Q</creator><creator>Metcalfe, Cushla J</creator><creator>Nogueira, Fabio T S</creator><creator>Vicentini, Renato</creator><creator>Alves, Cristiane de S</creator><creator>Van Sluys, Marie-Anne</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120416</creationdate><title>Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns</title><author>Domingues, Douglas S ; Cruz, Guilherme M Q ; Metcalfe, Cushla J ; Nogueira, Fabio T S ; Vicentini, Renato ; Alves, Cristiane de S ; Van Sluys, Marie-Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b750t-f8021b57953d018aa72e7ffb0fdf8210bfc7c52d356ba4eaccc45fa2fec2e59c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cellulase</topic><topic>Chromosomes</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Crops</topic><topic>Energy</topic><topic>Epigenetic</topic><topic>Epigenetic inheritance</topic><topic>Ethanol</topic><topic>Euchromatin</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>expressed sequence tags</topic><topic>Family</topic><topic>FISH</topic><topic>Fluorescence in situ hybridization</topic><topic>Gene amplification</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic Variation - genetics</topic><topic>Genetics</topic><topic>Genome</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Heterochromatin</topic><topic>Long terminal repeat</topic><topic>LTR Retrotransposons</topic><topic>Metaphase - genetics</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Plant genetics</topic><topic>Polymerase chain reaction</topic><topic>Polyploidy</topic><topic>Retroelements - genetics</topic><topic>Retrotransposons</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Untranslated - genetics</topic><topic>Saccharum - cytology</topic><topic>Saccharum - genetics</topic><topic>Small RNA</topic><topic>Sugar</topic><topic>Sugarcane</topic><topic>Terminal Repeat Sequences - genetics</topic><topic>Transcription</topic><topic>Transcription, Genetic - genetics</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domingues, Douglas S</creatorcontrib><creatorcontrib>Cruz, Guilherme M Q</creatorcontrib><creatorcontrib>Metcalfe, Cushla J</creatorcontrib><creatorcontrib>Nogueira, Fabio T S</creatorcontrib><creatorcontrib>Vicentini, Renato</creatorcontrib><creatorcontrib>Alves, Cristiane de S</creatorcontrib><creatorcontrib>Van Sluys, Marie-Anne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domingues, Douglas S</au><au>Cruz, Guilherme M Q</au><au>Metcalfe, Cushla J</au><au>Nogueira, Fabio T S</au><au>Vicentini, Renato</au><au>Alves, Cristiane de S</au><au>Van Sluys, Marie-Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2012-04-16</date><risdate>2012</risdate><volume>13</volume><issue>1</issue><spage>137</spage><epage>137</epage><pages>137-137</pages><artnum>137</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>22507400</pmid><doi>10.1186/1471-2164-13-137</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2012-04, Vol.13 (1), p.137-137, Article 137
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_477069990556487a9082c250b3c01b45
source Publicly Available Content Database; PubMed Central
subjects Cellulase
Chromosomes
Chromosomes, Artificial, Bacterial - genetics
Crops
Energy
Epigenetic
Epigenetic inheritance
Ethanol
Euchromatin
Evolution
Evolution, Molecular
expressed sequence tags
Family
FISH
Fluorescence in situ hybridization
Gene amplification
Gene expression
Gene mapping
Gene silencing
Genes
Genetic aspects
Genetic engineering
Genetic Variation - genetics
Genetics
Genome
Genome, Plant - genetics
Genomes
Genomics
Heterochromatin
Long terminal repeat
LTR Retrotransposons
Metaphase - genetics
Phylogeny
Physiological aspects
Plant genetics
Polymerase chain reaction
Polyploidy
Retroelements - genetics
Retrotransposons
RNA, Plant - genetics
RNA, Untranslated - genetics
Saccharum - cytology
Saccharum - genetics
Small RNA
Sugar
Sugarcane
Terminal Repeat Sequences - genetics
Transcription
Transcription, Genetic - genetics
Transposons
title Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20plant%20LTR-retrotransposons%20at%20the%20fine-scale%20family%20level%20reveals%20individual%20molecular%20patterns&rft.jtitle=BMC%20genomics&rft.au=Domingues,%20Douglas%20S&rft.date=2012-04-16&rft.volume=13&rft.issue=1&rft.spage=137&rft.epage=137&rft.pages=137-137&rft.artnum=137&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/1471-2164-13-137&rft_dat=%3Cgale_doaj_%3EA534116502%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b750t-f8021b57953d018aa72e7ffb0fdf8210bfc7c52d356ba4eaccc45fa2fec2e59c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1013671396&rft_id=info:pmid/22507400&rft_galeid=A534116502&rfr_iscdi=true