Loading…
Statistical Performances Evaluation of APSO and Improved APSO for Short Term Hydrothermal Scheduling Problem
The Accelerated Particle Swarm Optimization (APSO) algorithm is an efficient and the easiest to implement variant of the famous Particle Swarm Optimization (PSO) algorithm. PSO and its variant APSO have been implemented on the famous Short-Term Hydrothermal Scheduling (STHTS) problem in recent resea...
Saved in:
Published in: | Applied sciences 2019-06, Vol.9 (12), p.2440 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Accelerated Particle Swarm Optimization (APSO) algorithm is an efficient and the easiest to implement variant of the famous Particle Swarm Optimization (PSO) algorithm. PSO and its variant APSO have been implemented on the famous Short-Term Hydrothermal Scheduling (STHTS) problem in recent research, and they have shown promising results. The APSO algorithm can be further modified to enhance its optimizing capability by deploying dynamic search space squeezing. This paper presents the implementation of the improved APSO algorithm that is based on dynamic search space squeezing, on the short-term hydrothermal scheduling problem. To give a quantitative comparison, a true statistical comparison based on comparing means is also presented to draw conclusions. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9122440 |