Loading…
A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation
Femoral stem of titanium alloy has been widely used for hip arthroplasty with considerable efficacy; however, the application of this implant in patients with osteoporosis is limited due to excessive bone resorption. Macrophages participate in the regulation of inflammatory response and have been a...
Saved in:
Published in: | Journal of nanobiotechnology 2022-02, Vol.20 (1), p.68-68, Article 68 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c597t-a0edbb040d7ae91a5a005fe1a1edb7a91929109743987b5acd4bbe5dd9060afa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c597t-a0edbb040d7ae91a5a005fe1a1edb7a91929109743987b5acd4bbe5dd9060afa3 |
container_end_page | 68 |
container_issue | 1 |
container_start_page | 68 |
container_title | Journal of nanobiotechnology |
container_volume | 20 |
creator | Wang, Wei Xiong, Yinze Zhao, Renliang Li, Xiang Jia, Weitao |
description | Femoral stem of titanium alloy has been widely used for hip arthroplasty with considerable efficacy; however, the application of this implant in patients with osteoporosis is limited due to excessive bone resorption. Macrophages participate in the regulation of inflammatory response and have been a topic of increasing research interest in implant field. However, few study has explored the link between macrophage polarization and osteogenic-osteoclastic differentiation. The present study aims to develop a novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through immunotherapy.
To improve the osteointegration under osteoporosis, we developed a hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold (PT). Biomimetic extracellular matrix (ECM) was constructed inside the interconnected pores of PT in micro-scale. And in nano-scale, a drug cargo icariin@Mg-MOF-74 (ICA@MOF) was wrapped in ECM-like structure that can control release of icariin and Mg
.
In this novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold, the macroporous structure provides mechanical support, the microporous structure facilitates cell adhesion and enhances biocompatibility, and the nanostructure plays a biological effect. We also demonstrate the formation of abundant new bone at peripheral and internal sites after intramedullary implantation of the biofunctionalized PT into the distal femur in osteoporotic rats. We further find that the controlled-release of icariin and Mg
from the biofunctionalized PT can significantly improve the polarization of M0 macrophages to M2-type by inhibiting notch1 signaling pathway and induce the secretion of anti-inflammatory cytokines; thus, it significantly ameliorates bone metabolism, which contributes to improving the osseointegration between the PT and osteoporotic bone.
The therapeutic potential of hierarchical PT implants containing controlled release system are effective in geriatric orthopaedic osseointegration. |
doi_str_mv | 10.1186/s12951-022-01277-0 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_47a8996dedd34d189ab909a8df80ebd6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693682663</galeid><doaj_id>oai_doaj_org_article_47a8996dedd34d189ab909a8df80ebd6</doaj_id><sourcerecordid>A693682663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-a0edbb040d7ae91a5a005fe1a1edb7a91929109743987b5acd4bbe5dd9060afa3</originalsourceid><addsrcrecordid>eNptkstu1DAUhiMEoqXwAixQJDZlkeJLLvYGaVRuI1VCgsLWOrGdiUeJXeykXF6DF-ZkppQOQl7k-Pj7_8Qnf5Y9peSMUlG_TJTJihaEsYJQ1jQFuZcd0xILTqvq_p36KHuU0pYgWbLyYXbEK8p4Rehx9muV-3Bth7x3NkLUvdMw5K0L3ez15IKHwf20Juevi6vo_ITlVYhhTvmlq1dD-SVPGrouDCb_5qY-t74Hr5EKabJhQSencZNsWNSbCItpPvXosen3lBvH2YcxmHnYnT7OHnQwJPvk5nmSfX775vL8fXHx4d36fHVR6Eo2UwHEmrYlJTENWEmhAkKqzlKg2G9AUskkJbIpuRRNW4E2ZdvayhhJagId8JNsvfc1AbYKrzdC_KECOLVrhLhREPHzB6vKBoSUtbHG8NJQIaGVRIIwnSC2NTV6vdp7Xc3taI22foowHJgennjXq024VkLQphQUDU5vDGL4Ots0qdElbYcBvMVxK1bjYlyWAtHn_6DbMEf8UwvFScWIqNhfagN4Aee7gO_Vi6la1ZLXgtU1R-rsPxQuY0eng7edw_6B4MWBAJnJfp82MKek1p8-HrJsz-qICYi2u50HJWqJsNpHWGEw1S7CiqDo2d1J3kr-ZJb_BgjM73o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2630520852</pqid></control><display><type>article</type><title>A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Wang, Wei ; Xiong, Yinze ; Zhao, Renliang ; Li, Xiang ; Jia, Weitao</creator><creatorcontrib>Wang, Wei ; Xiong, Yinze ; Zhao, Renliang ; Li, Xiang ; Jia, Weitao</creatorcontrib><description>Femoral stem of titanium alloy has been widely used for hip arthroplasty with considerable efficacy; however, the application of this implant in patients with osteoporosis is limited due to excessive bone resorption. Macrophages participate in the regulation of inflammatory response and have been a topic of increasing research interest in implant field. However, few study has explored the link between macrophage polarization and osteogenic-osteoclastic differentiation. The present study aims to develop a novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through immunotherapy.
To improve the osteointegration under osteoporosis, we developed a hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold (PT). Biomimetic extracellular matrix (ECM) was constructed inside the interconnected pores of PT in micro-scale. And in nano-scale, a drug cargo icariin@Mg-MOF-74 (ICA@MOF) was wrapped in ECM-like structure that can control release of icariin and Mg
.
In this novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold, the macroporous structure provides mechanical support, the microporous structure facilitates cell adhesion and enhances biocompatibility, and the nanostructure plays a biological effect. We also demonstrate the formation of abundant new bone at peripheral and internal sites after intramedullary implantation of the biofunctionalized PT into the distal femur in osteoporotic rats. We further find that the controlled-release of icariin and Mg
from the biofunctionalized PT can significantly improve the polarization of M0 macrophages to M2-type by inhibiting notch1 signaling pathway and induce the secretion of anti-inflammatory cytokines; thus, it significantly ameliorates bone metabolism, which contributes to improving the osseointegration between the PT and osteoporotic bone.
The therapeutic potential of hierarchical PT implants containing controlled release system are effective in geriatric orthopaedic osseointegration.</description><identifier>ISSN: 1477-3155</identifier><identifier>EISSN: 1477-3155</identifier><identifier>DOI: 10.1186/s12951-022-01277-0</identifier><identifier>PMID: 35123501</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>3D-printed Ti6Al4V ; Additive manufacturing ; Aged ; Alloys ; Analysis ; Animals ; Aqueous solutions ; Arthroplasty (hip) ; Biocompatibility ; Biological effects ; Biomedical materials ; Biomimetics ; Bone growth ; Bone implants ; Bone resorption ; Bone turnover ; Bones ; Care and treatment ; Cell adhesion ; Controlled release ; Cytokines ; Diagnosis ; Drug delivery systems ; Extracellular matrix ; Femoral components ; Femur ; Fractures ; Health aspects ; Hierarchical biofunctionalization ; Humans ; Hydrogels ; Immunology ; Immunotherapy ; Inflammation ; Inflammatory response ; Lasers ; Macrophage polarization ; Macrophages ; Magnesium ; Metabolism ; MOF ; Notch1 protein ; Orthopedics ; Osseointegration ; Osteoclastogenesis ; Osteoclasts ; Osteogenesis ; Osteogenic–osteoclastic differentiation ; Osteoporosis ; Osteoporotic osseointegration ; Polarization ; Pore size ; Porosity ; Printing, Three-Dimensional ; Prostheses ; Rats ; Risk factors ; Scaffolds ; Signal transduction ; Surgical implants ; Three dimensional printing ; Titanium ; Titanium - chemistry ; Titanium - pharmacology ; Titanium alloys ; Titanium base alloys ; Transplants & implants</subject><ispartof>Journal of nanobiotechnology, 2022-02, Vol.20 (1), p.68-68, Article 68</ispartof><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-a0edbb040d7ae91a5a005fe1a1edb7a91929109743987b5acd4bbe5dd9060afa3</citedby><cites>FETCH-LOGICAL-c597t-a0edbb040d7ae91a5a005fe1a1edb7a91929109743987b5acd4bbe5dd9060afa3</cites><orcidid>0000-0001-9363-5598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817481/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2630520852?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35123501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xiong, Yinze</creatorcontrib><creatorcontrib>Zhao, Renliang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Jia, Weitao</creatorcontrib><title>A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation</title><title>Journal of nanobiotechnology</title><addtitle>J Nanobiotechnology</addtitle><description>Femoral stem of titanium alloy has been widely used for hip arthroplasty with considerable efficacy; however, the application of this implant in patients with osteoporosis is limited due to excessive bone resorption. Macrophages participate in the regulation of inflammatory response and have been a topic of increasing research interest in implant field. However, few study has explored the link between macrophage polarization and osteogenic-osteoclastic differentiation. The present study aims to develop a novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through immunotherapy.
To improve the osteointegration under osteoporosis, we developed a hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold (PT). Biomimetic extracellular matrix (ECM) was constructed inside the interconnected pores of PT in micro-scale. And in nano-scale, a drug cargo icariin@Mg-MOF-74 (ICA@MOF) was wrapped in ECM-like structure that can control release of icariin and Mg
.
In this novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold, the macroporous structure provides mechanical support, the microporous structure facilitates cell adhesion and enhances biocompatibility, and the nanostructure plays a biological effect. We also demonstrate the formation of abundant new bone at peripheral and internal sites after intramedullary implantation of the biofunctionalized PT into the distal femur in osteoporotic rats. We further find that the controlled-release of icariin and Mg
from the biofunctionalized PT can significantly improve the polarization of M0 macrophages to M2-type by inhibiting notch1 signaling pathway and induce the secretion of anti-inflammatory cytokines; thus, it significantly ameliorates bone metabolism, which contributes to improving the osseointegration between the PT and osteoporotic bone.
The therapeutic potential of hierarchical PT implants containing controlled release system are effective in geriatric orthopaedic osseointegration.</description><subject>3D-printed Ti6Al4V</subject><subject>Additive manufacturing</subject><subject>Aged</subject><subject>Alloys</subject><subject>Analysis</subject><subject>Animals</subject><subject>Aqueous solutions</subject><subject>Arthroplasty (hip)</subject><subject>Biocompatibility</subject><subject>Biological effects</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bone growth</subject><subject>Bone implants</subject><subject>Bone resorption</subject><subject>Bone turnover</subject><subject>Bones</subject><subject>Care and treatment</subject><subject>Cell adhesion</subject><subject>Controlled release</subject><subject>Cytokines</subject><subject>Diagnosis</subject><subject>Drug delivery systems</subject><subject>Extracellular matrix</subject><subject>Femoral components</subject><subject>Femur</subject><subject>Fractures</subject><subject>Health aspects</subject><subject>Hierarchical biofunctionalization</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Lasers</subject><subject>Macrophage polarization</subject><subject>Macrophages</subject><subject>Magnesium</subject><subject>Metabolism</subject><subject>MOF</subject><subject>Notch1 protein</subject><subject>Orthopedics</subject><subject>Osseointegration</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteogenesis</subject><subject>Osteogenic–osteoclastic differentiation</subject><subject>Osteoporosis</subject><subject>Osteoporotic osseointegration</subject><subject>Polarization</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Printing, Three-Dimensional</subject><subject>Prostheses</subject><subject>Rats</subject><subject>Risk factors</subject><subject>Scaffolds</subject><subject>Signal transduction</subject><subject>Surgical implants</subject><subject>Three dimensional printing</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Titanium - pharmacology</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Transplants & implants</subject><issn>1477-3155</issn><issn>1477-3155</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstu1DAUhiMEoqXwAixQJDZlkeJLLvYGaVRuI1VCgsLWOrGdiUeJXeykXF6DF-ZkppQOQl7k-Pj7_8Qnf5Y9peSMUlG_TJTJihaEsYJQ1jQFuZcd0xILTqvq_p36KHuU0pYgWbLyYXbEK8p4Rehx9muV-3Bth7x3NkLUvdMw5K0L3ez15IKHwf20Juevi6vo_ITlVYhhTvmlq1dD-SVPGrouDCb_5qY-t74Hr5EKabJhQSencZNsWNSbCItpPvXosen3lBvH2YcxmHnYnT7OHnQwJPvk5nmSfX775vL8fXHx4d36fHVR6Eo2UwHEmrYlJTENWEmhAkKqzlKg2G9AUskkJbIpuRRNW4E2ZdvayhhJagId8JNsvfc1AbYKrzdC_KECOLVrhLhREPHzB6vKBoSUtbHG8NJQIaGVRIIwnSC2NTV6vdp7Xc3taI22foowHJgennjXq024VkLQphQUDU5vDGL4Ots0qdElbYcBvMVxK1bjYlyWAtHn_6DbMEf8UwvFScWIqNhfagN4Aee7gO_Vi6la1ZLXgtU1R-rsPxQuY0eng7edw_6B4MWBAJnJfp82MKek1p8-HrJsz-qICYi2u50HJWqJsNpHWGEw1S7CiqDo2d1J3kr-ZJb_BgjM73o</recordid><startdate>20220205</startdate><enddate>20220205</enddate><creator>Wang, Wei</creator><creator>Xiong, Yinze</creator><creator>Zhao, Renliang</creator><creator>Li, Xiang</creator><creator>Jia, Weitao</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9363-5598</orcidid></search><sort><creationdate>20220205</creationdate><title>A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation</title><author>Wang, Wei ; Xiong, Yinze ; Zhao, Renliang ; Li, Xiang ; Jia, Weitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-a0edbb040d7ae91a5a005fe1a1edb7a91929109743987b5acd4bbe5dd9060afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D-printed Ti6Al4V</topic><topic>Additive manufacturing</topic><topic>Aged</topic><topic>Alloys</topic><topic>Analysis</topic><topic>Animals</topic><topic>Aqueous solutions</topic><topic>Arthroplasty (hip)</topic><topic>Biocompatibility</topic><topic>Biological effects</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bone growth</topic><topic>Bone implants</topic><topic>Bone resorption</topic><topic>Bone turnover</topic><topic>Bones</topic><topic>Care and treatment</topic><topic>Cell adhesion</topic><topic>Controlled release</topic><topic>Cytokines</topic><topic>Diagnosis</topic><topic>Drug delivery systems</topic><topic>Extracellular matrix</topic><topic>Femoral components</topic><topic>Femur</topic><topic>Fractures</topic><topic>Health aspects</topic><topic>Hierarchical biofunctionalization</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Lasers</topic><topic>Macrophage polarization</topic><topic>Macrophages</topic><topic>Magnesium</topic><topic>Metabolism</topic><topic>MOF</topic><topic>Notch1 protein</topic><topic>Orthopedics</topic><topic>Osseointegration</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteogenesis</topic><topic>Osteogenic–osteoclastic differentiation</topic><topic>Osteoporosis</topic><topic>Osteoporotic osseointegration</topic><topic>Polarization</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Printing, Three-Dimensional</topic><topic>Prostheses</topic><topic>Rats</topic><topic>Risk factors</topic><topic>Scaffolds</topic><topic>Signal transduction</topic><topic>Surgical implants</topic><topic>Three dimensional printing</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Titanium - pharmacology</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xiong, Yinze</creatorcontrib><creatorcontrib>Zhao, Renliang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Jia, Weitao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of nanobiotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Xiong, Yinze</au><au>Zhao, Renliang</au><au>Li, Xiang</au><au>Jia, Weitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation</atitle><jtitle>Journal of nanobiotechnology</jtitle><addtitle>J Nanobiotechnology</addtitle><date>2022-02-05</date><risdate>2022</risdate><volume>20</volume><issue>1</issue><spage>68</spage><epage>68</epage><pages>68-68</pages><artnum>68</artnum><issn>1477-3155</issn><eissn>1477-3155</eissn><abstract>Femoral stem of titanium alloy has been widely used for hip arthroplasty with considerable efficacy; however, the application of this implant in patients with osteoporosis is limited due to excessive bone resorption. Macrophages participate in the regulation of inflammatory response and have been a topic of increasing research interest in implant field. However, few study has explored the link between macrophage polarization and osteogenic-osteoclastic differentiation. The present study aims to develop a novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through immunotherapy.
To improve the osteointegration under osteoporosis, we developed a hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold (PT). Biomimetic extracellular matrix (ECM) was constructed inside the interconnected pores of PT in micro-scale. And in nano-scale, a drug cargo icariin@Mg-MOF-74 (ICA@MOF) was wrapped in ECM-like structure that can control release of icariin and Mg
.
In this novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold, the macroporous structure provides mechanical support, the microporous structure facilitates cell adhesion and enhances biocompatibility, and the nanostructure plays a biological effect. We also demonstrate the formation of abundant new bone at peripheral and internal sites after intramedullary implantation of the biofunctionalized PT into the distal femur in osteoporotic rats. We further find that the controlled-release of icariin and Mg
from the biofunctionalized PT can significantly improve the polarization of M0 macrophages to M2-type by inhibiting notch1 signaling pathway and induce the secretion of anti-inflammatory cytokines; thus, it significantly ameliorates bone metabolism, which contributes to improving the osseointegration between the PT and osteoporotic bone.
The therapeutic potential of hierarchical PT implants containing controlled release system are effective in geriatric orthopaedic osseointegration.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>35123501</pmid><doi>10.1186/s12951-022-01277-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9363-5598</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-3155 |
ispartof | Journal of nanobiotechnology, 2022-02, Vol.20 (1), p.68-68, Article 68 |
issn | 1477-3155 1477-3155 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_47a8996dedd34d189ab909a8df80ebd6 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | 3D-printed Ti6Al4V Additive manufacturing Aged Alloys Analysis Animals Aqueous solutions Arthroplasty (hip) Biocompatibility Biological effects Biomedical materials Biomimetics Bone growth Bone implants Bone resorption Bone turnover Bones Care and treatment Cell adhesion Controlled release Cytokines Diagnosis Drug delivery systems Extracellular matrix Femoral components Femur Fractures Health aspects Hierarchical biofunctionalization Humans Hydrogels Immunology Immunotherapy Inflammation Inflammatory response Lasers Macrophage polarization Macrophages Magnesium Metabolism MOF Notch1 protein Orthopedics Osseointegration Osteoclastogenesis Osteoclasts Osteogenesis Osteogenic–osteoclastic differentiation Osteoporosis Osteoporotic osseointegration Polarization Pore size Porosity Printing, Three-Dimensional Prostheses Rats Risk factors Scaffolds Signal transduction Surgical implants Three dimensional printing Titanium Titanium - chemistry Titanium - pharmacology Titanium alloys Titanium base alloys Transplants & implants |
title | A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20hierarchical%20biofunctionalized%203D-printed%20porous%20Ti6Al4V%20scaffold%20with%20enhanced%20osteoporotic%20osseointegration%20through%20osteoimmunomodulation&rft.jtitle=Journal%20of%20nanobiotechnology&rft.au=Wang,%20Wei&rft.date=2022-02-05&rft.volume=20&rft.issue=1&rft.spage=68&rft.epage=68&rft.pages=68-68&rft.artnum=68&rft.issn=1477-3155&rft.eissn=1477-3155&rft_id=info:doi/10.1186/s12951-022-01277-0&rft_dat=%3Cgale_doaj_%3EA693682663%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c597t-a0edbb040d7ae91a5a005fe1a1edb7a91929109743987b5acd4bbe5dd9060afa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2630520852&rft_id=info:pmid/35123501&rft_galeid=A693682663&rfr_iscdi=true |