Loading…

Thermodynamic Efficiency Maximum of Simple Organic Rankine Cycles

The increase of the maximal cycle temperature is considered as one of the best tools to increase cycle efficiency for all thermodynamic cycles, including Organic Rankine Cycles (ORC). Technically, this can be done in various ways, but probably the best solution is the use of hybrid systems, i.e., us...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-01, Vol.14 (2), p.307
Main Authors: Ahmed, Aram Mohammed, Kondor, László, Imre, Attila R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The increase of the maximal cycle temperature is considered as one of the best tools to increase cycle efficiency for all thermodynamic cycles, including Organic Rankine Cycles (ORC). Technically, this can be done in various ways, but probably the best solution is the use of hybrid systems, i.e., using an added high-temperature heat source to the existing low-temperature heat source. Obviously, this kind of improvement has technical difficulties and added costs; therefore, the increase of efficiency by increasing the maximal temperature sometimes has technical and/or financial limits. In this paper, we would like to show that for an ideal, simple-layout ORC system, a thermodynamic efficiency-maximum can also exist. It means that for several working fluids, the thermodynamic efficiency vs. maximal cycle temperature function has a maximum, located in the sub-critical temperature range. A proof will be given by comparing ORC efficiencies with TFC (Trilateral Flash Cycle) efficiencies; for wet working fluids, further theoretical evidence can be given. The group of working fluids with this kind of maximum will be defined. Generalization for normal (steam) Rankine cycles and CO2 subcritical Rankine cycles will also be shown. Based on these results, one can conclude that the increase of the maximal cycle temperature is not always a useful tool for efficiency-increase; this result can be especially important for hybrid systems.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14020307