Loading…
Temporal order of bipolar cell genesis in the neural retina
Retinal bipolar cells comprise a diverse group of neurons. Cone bipolar cells and rod bipolar cells are so named for their connections with cone and rod photoreceptors, respectively. Morphological criteria have been established that distinguish nine types of cone bipolar cells and one type of rod bi...
Saved in:
Published in: | Neural development 2008-01, Vol.3 (1), p.2-2, Article 2 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b675t-7a03e14ae5c6f9a9fe7ed3a858a4b800bd80f41e5bc7ae4fe7e9fba0bdb5b0ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-b675t-7a03e14ae5c6f9a9fe7ed3a858a4b800bd80f41e5bc7ae4fe7e9fba0bdb5b0ee3 |
container_end_page | 2 |
container_issue | 1 |
container_start_page | 2 |
container_title | Neural development |
container_volume | 3 |
creator | Morrow, Eric M Chen, C-M Amy Cepko, Constance L |
description | Retinal bipolar cells comprise a diverse group of neurons. Cone bipolar cells and rod bipolar cells are so named for their connections with cone and rod photoreceptors, respectively. Morphological criteria have been established that distinguish nine types of cone bipolar cells and one type of rod bipolar cell in mouse and rat. While anatomical and physiological aspects of bipolar types have been actively studied, little is known about the sequence of events that leads to bipolar cell type specification and the potential relationship this process may have with synapse formation in the outer plexiform layer. In this study, we have examined the birth order of rod and cone bipolar cells in the developing mouse and rat in vivo.
Using retroviral lineage analysis with the histochemical marker alkaline phosphatase, the percentage of cone and rod bipolar cells born on postnatal day 0 (P0), P4, and P6 were determined, based upon the well characterized morphology of these cells in the adult rat retina. In this in vivo experiment, we have demonstrated that cone bipolar genesis clearly precedes rod bipolar genesis. In addition, in the postnatal mouse retina, using a combination of tritiated-thymidine birthdating and immunohistochemistry to distinguish bipolar types, we have similarly found that cone bipolar genesis precedes rod bipolar genesis. The tritiated-thymidine birthdating studies also included quantification of the birth of all postnatally generated retinal cell types in the mouse.
Using two independent in vivo methodologies in rat and mouse retina, we have demonstrated that there are distinct waves of genesis of the two major bipolar cell types, with cone bipolar genesis preceding rod bipolar genesis. These waves of bipolar genesis correspond to the order of genesis of the presynaptic photoreceptor cell types. |
doi_str_mv | 10.1186/1749-8104-3-2 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_47ef5a9d32fb44afb4c88c6922bf421c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A175044430</galeid><doaj_id>oai_doaj_org_article_47ef5a9d32fb44afb4c88c6922bf421c</doaj_id><sourcerecordid>A175044430</sourcerecordid><originalsourceid>FETCH-LOGICAL-b675t-7a03e14ae5c6f9a9fe7ed3a858a4b800bd80f41e5bc7ae4fe7e9fba0bdb5b0ee3</originalsourceid><addsrcrecordid>eNp1kluL1TAQgIso7kUffZWCIPjQNbe2KYK4LKseWBB0fQ6TdNLN0jbHpBX996b2sG5RCeQy8-UjkyTLnlFyRqmsXtNaNIWkRBS8YA-y47v1w3vzo-wkxltCSsIq-Tg7opLRktPmOHtzjcPeB-hzH1oMube5dnvfQ8gN9n3e4YjRxdyN-XSD-Yjzwgac3AhPskcW-ohPD-Np9vX95fXFx-Lq04fdxflVoau6nIoaCEcqAEtT2QYaizW2HGQpQWhJiG4lsYJiqU0NKJZ0YzWkuC41QeSn2W71th5u1T64AcJP5cGp3wEfOgVhcqZHJWq0JTQtZ1YLAakzUpqqYUxbwahJrreraz_rAVuD45QK2ki3mdHdqM5_V4wJSWWdBO9WgXb-P4JtxvhBLQ-hlodQXLGkeHk4Q_DfZoyTGlxcbhtG9HNUNeG0qkqRwBcr2EGqzY3WJ6NZYHVO65IIIThJ1Nk_qNRaHJzxI1qX4psNrzYbEjPhj6mDOUa1-_J5yxYra4KPMaC9q5QStXzAv2p7fv9-_9CHH8d_AQDM1gQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70316654</pqid></control><display><type>article</type><title>Temporal order of bipolar cell genesis in the neural retina</title><source>PMC (PubMed Central)</source><creator>Morrow, Eric M ; Chen, C-M Amy ; Cepko, Constance L</creator><creatorcontrib>Morrow, Eric M ; Chen, C-M Amy ; Cepko, Constance L</creatorcontrib><description>Retinal bipolar cells comprise a diverse group of neurons. Cone bipolar cells and rod bipolar cells are so named for their connections with cone and rod photoreceptors, respectively. Morphological criteria have been established that distinguish nine types of cone bipolar cells and one type of rod bipolar cell in mouse and rat. While anatomical and physiological aspects of bipolar types have been actively studied, little is known about the sequence of events that leads to bipolar cell type specification and the potential relationship this process may have with synapse formation in the outer plexiform layer. In this study, we have examined the birth order of rod and cone bipolar cells in the developing mouse and rat in vivo.
Using retroviral lineage analysis with the histochemical marker alkaline phosphatase, the percentage of cone and rod bipolar cells born on postnatal day 0 (P0), P4, and P6 were determined, based upon the well characterized morphology of these cells in the adult rat retina. In this in vivo experiment, we have demonstrated that cone bipolar genesis clearly precedes rod bipolar genesis. In addition, in the postnatal mouse retina, using a combination of tritiated-thymidine birthdating and immunohistochemistry to distinguish bipolar types, we have similarly found that cone bipolar genesis precedes rod bipolar genesis. The tritiated-thymidine birthdating studies also included quantification of the birth of all postnatally generated retinal cell types in the mouse.
Using two independent in vivo methodologies in rat and mouse retina, we have demonstrated that there are distinct waves of genesis of the two major bipolar cell types, with cone bipolar genesis preceding rod bipolar genesis. These waves of bipolar genesis correspond to the order of genesis of the presynaptic photoreceptor cell types.</description><identifier>ISSN: 1749-8104</identifier><identifier>EISSN: 1749-8104</identifier><identifier>DOI: 10.1186/1749-8104-3-2</identifier><identifier>PMID: 18215319</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Animals ; Biomarkers ; Bipolar disorder ; Cell Lineage - physiology ; Female ; Gene expression ; Mice ; Mice, Inbred C57BL ; Neurological research ; Plasmids ; Pregnancy ; Rats ; Rats, Sprague-Dawley ; Retina ; Retina - cytology ; Retina - embryology ; Retinal Bipolar Cells - cytology ; Retinal Cone Photoreceptor Cells - cytology ; Retinal Rod Photoreceptor Cells - cytology ; Retroviridae - genetics ; Structure ; Thymidine - metabolism ; Tritium ; Visual Pathways - cytology ; Visual Pathways - embryology</subject><ispartof>Neural development, 2008-01, Vol.3 (1), p.2-2, Article 2</ispartof><rights>COPYRIGHT 2008 BioMed Central Ltd.</rights><rights>Copyright © 2008 Morrow et al.; licensee BioMed Central Ltd. 2008 Morrow et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b675t-7a03e14ae5c6f9a9fe7ed3a858a4b800bd80f41e5bc7ae4fe7e9fba0bdb5b0ee3</citedby><cites>FETCH-LOGICAL-b675t-7a03e14ae5c6f9a9fe7ed3a858a4b800bd80f41e5bc7ae4fe7e9fba0bdb5b0ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248187/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248187/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18215319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morrow, Eric M</creatorcontrib><creatorcontrib>Chen, C-M Amy</creatorcontrib><creatorcontrib>Cepko, Constance L</creatorcontrib><title>Temporal order of bipolar cell genesis in the neural retina</title><title>Neural development</title><addtitle>Neural Dev</addtitle><description>Retinal bipolar cells comprise a diverse group of neurons. Cone bipolar cells and rod bipolar cells are so named for their connections with cone and rod photoreceptors, respectively. Morphological criteria have been established that distinguish nine types of cone bipolar cells and one type of rod bipolar cell in mouse and rat. While anatomical and physiological aspects of bipolar types have been actively studied, little is known about the sequence of events that leads to bipolar cell type specification and the potential relationship this process may have with synapse formation in the outer plexiform layer. In this study, we have examined the birth order of rod and cone bipolar cells in the developing mouse and rat in vivo.
Using retroviral lineage analysis with the histochemical marker alkaline phosphatase, the percentage of cone and rod bipolar cells born on postnatal day 0 (P0), P4, and P6 were determined, based upon the well characterized morphology of these cells in the adult rat retina. In this in vivo experiment, we have demonstrated that cone bipolar genesis clearly precedes rod bipolar genesis. In addition, in the postnatal mouse retina, using a combination of tritiated-thymidine birthdating and immunohistochemistry to distinguish bipolar types, we have similarly found that cone bipolar genesis precedes rod bipolar genesis. The tritiated-thymidine birthdating studies also included quantification of the birth of all postnatally generated retinal cell types in the mouse.
Using two independent in vivo methodologies in rat and mouse retina, we have demonstrated that there are distinct waves of genesis of the two major bipolar cell types, with cone bipolar genesis preceding rod bipolar genesis. These waves of bipolar genesis correspond to the order of genesis of the presynaptic photoreceptor cell types.</description><subject>Animals</subject><subject>Biomarkers</subject><subject>Bipolar disorder</subject><subject>Cell Lineage - physiology</subject><subject>Female</subject><subject>Gene expression</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurological research</subject><subject>Plasmids</subject><subject>Pregnancy</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Retina</subject><subject>Retina - cytology</subject><subject>Retina - embryology</subject><subject>Retinal Bipolar Cells - cytology</subject><subject>Retinal Cone Photoreceptor Cells - cytology</subject><subject>Retinal Rod Photoreceptor Cells - cytology</subject><subject>Retroviridae - genetics</subject><subject>Structure</subject><subject>Thymidine - metabolism</subject><subject>Tritium</subject><subject>Visual Pathways - cytology</subject><subject>Visual Pathways - embryology</subject><issn>1749-8104</issn><issn>1749-8104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kluL1TAQgIso7kUffZWCIPjQNbe2KYK4LKseWBB0fQ6TdNLN0jbHpBX996b2sG5RCeQy8-UjkyTLnlFyRqmsXtNaNIWkRBS8YA-y47v1w3vzo-wkxltCSsIq-Tg7opLRktPmOHtzjcPeB-hzH1oMube5dnvfQ8gN9n3e4YjRxdyN-XSD-Yjzwgac3AhPskcW-ohPD-Np9vX95fXFx-Lq04fdxflVoau6nIoaCEcqAEtT2QYaizW2HGQpQWhJiG4lsYJiqU0NKJZ0YzWkuC41QeSn2W71th5u1T64AcJP5cGp3wEfOgVhcqZHJWq0JTQtZ1YLAakzUpqqYUxbwahJrreraz_rAVuD45QK2ki3mdHdqM5_V4wJSWWdBO9WgXb-P4JtxvhBLQ-hlodQXLGkeHk4Q_DfZoyTGlxcbhtG9HNUNeG0qkqRwBcr2EGqzY3WJ6NZYHVO65IIIThJ1Nk_qNRaHJzxI1qX4psNrzYbEjPhj6mDOUa1-_J5yxYra4KPMaC9q5QStXzAv2p7fv9-_9CHH8d_AQDM1gQ</recordid><startdate>20080123</startdate><enddate>20080123</enddate><creator>Morrow, Eric M</creator><creator>Chen, C-M Amy</creator><creator>Cepko, Constance L</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20080123</creationdate><title>Temporal order of bipolar cell genesis in the neural retina</title><author>Morrow, Eric M ; Chen, C-M Amy ; Cepko, Constance L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b675t-7a03e14ae5c6f9a9fe7ed3a858a4b800bd80f41e5bc7ae4fe7e9fba0bdb5b0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Biomarkers</topic><topic>Bipolar disorder</topic><topic>Cell Lineage - physiology</topic><topic>Female</topic><topic>Gene expression</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurological research</topic><topic>Plasmids</topic><topic>Pregnancy</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Retina</topic><topic>Retina - cytology</topic><topic>Retina - embryology</topic><topic>Retinal Bipolar Cells - cytology</topic><topic>Retinal Cone Photoreceptor Cells - cytology</topic><topic>Retinal Rod Photoreceptor Cells - cytology</topic><topic>Retroviridae - genetics</topic><topic>Structure</topic><topic>Thymidine - metabolism</topic><topic>Tritium</topic><topic>Visual Pathways - cytology</topic><topic>Visual Pathways - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morrow, Eric M</creatorcontrib><creatorcontrib>Chen, C-M Amy</creatorcontrib><creatorcontrib>Cepko, Constance L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Neural development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morrow, Eric M</au><au>Chen, C-M Amy</au><au>Cepko, Constance L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal order of bipolar cell genesis in the neural retina</atitle><jtitle>Neural development</jtitle><addtitle>Neural Dev</addtitle><date>2008-01-23</date><risdate>2008</risdate><volume>3</volume><issue>1</issue><spage>2</spage><epage>2</epage><pages>2-2</pages><artnum>2</artnum><issn>1749-8104</issn><eissn>1749-8104</eissn><abstract>Retinal bipolar cells comprise a diverse group of neurons. Cone bipolar cells and rod bipolar cells are so named for their connections with cone and rod photoreceptors, respectively. Morphological criteria have been established that distinguish nine types of cone bipolar cells and one type of rod bipolar cell in mouse and rat. While anatomical and physiological aspects of bipolar types have been actively studied, little is known about the sequence of events that leads to bipolar cell type specification and the potential relationship this process may have with synapse formation in the outer plexiform layer. In this study, we have examined the birth order of rod and cone bipolar cells in the developing mouse and rat in vivo.
Using retroviral lineage analysis with the histochemical marker alkaline phosphatase, the percentage of cone and rod bipolar cells born on postnatal day 0 (P0), P4, and P6 were determined, based upon the well characterized morphology of these cells in the adult rat retina. In this in vivo experiment, we have demonstrated that cone bipolar genesis clearly precedes rod bipolar genesis. In addition, in the postnatal mouse retina, using a combination of tritiated-thymidine birthdating and immunohistochemistry to distinguish bipolar types, we have similarly found that cone bipolar genesis precedes rod bipolar genesis. The tritiated-thymidine birthdating studies also included quantification of the birth of all postnatally generated retinal cell types in the mouse.
Using two independent in vivo methodologies in rat and mouse retina, we have demonstrated that there are distinct waves of genesis of the two major bipolar cell types, with cone bipolar genesis preceding rod bipolar genesis. These waves of bipolar genesis correspond to the order of genesis of the presynaptic photoreceptor cell types.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>18215319</pmid><doi>10.1186/1749-8104-3-2</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-8104 |
ispartof | Neural development, 2008-01, Vol.3 (1), p.2-2, Article 2 |
issn | 1749-8104 1749-8104 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_47ef5a9d32fb44afb4c88c6922bf421c |
source | PMC (PubMed Central) |
subjects | Animals Biomarkers Bipolar disorder Cell Lineage - physiology Female Gene expression Mice Mice, Inbred C57BL Neurological research Plasmids Pregnancy Rats Rats, Sprague-Dawley Retina Retina - cytology Retina - embryology Retinal Bipolar Cells - cytology Retinal Cone Photoreceptor Cells - cytology Retinal Rod Photoreceptor Cells - cytology Retroviridae - genetics Structure Thymidine - metabolism Tritium Visual Pathways - cytology Visual Pathways - embryology |
title | Temporal order of bipolar cell genesis in the neural retina |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20order%20of%20bipolar%20cell%20genesis%20in%20the%20neural%20retina&rft.jtitle=Neural%20development&rft.au=Morrow,%20Eric%20M&rft.date=2008-01-23&rft.volume=3&rft.issue=1&rft.spage=2&rft.epage=2&rft.pages=2-2&rft.artnum=2&rft.issn=1749-8104&rft.eissn=1749-8104&rft_id=info:doi/10.1186/1749-8104-3-2&rft_dat=%3Cgale_doaj_%3EA175044430%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b675t-7a03e14ae5c6f9a9fe7ed3a858a4b800bd80f41e5bc7ae4fe7e9fba0bdb5b0ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70316654&rft_id=info:pmid/18215319&rft_galeid=A175044430&rfr_iscdi=true |