Loading…

The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future

In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optim...

Full description

Saved in:
Bibliographic Details
Published in:Medicina (Kaunas, Lithuania) Lithuania), 2020-07, Vol.56 (7), p.364
Main Authors: Lazăr, Daniela Cornelia, Avram, Mihaela Flavia, Faur, Alexandra Corina, Goldiş, Adrian, Romoşan, Ioan, Tăban, Sorina, Cornianu, Mărioara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453
cites cdi_FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453
container_end_page
container_issue 7
container_start_page 364
container_title Medicina (Kaunas, Lithuania)
container_volume 56
creator Lazăr, Daniela Cornelia
Avram, Mihaela Flavia
Faur, Alexandra Corina
Goldiş, Adrian
Romoşan, Ioan
Tăban, Sorina
Cornianu, Mărioara
description In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists, time-consuming procedures, lack of availability of advanced procedures, increasing workloads, and development of endoscopic mass screening programs. Recent research has tended toward computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional multicenter randomized trials and the development of existent database platforms are needed to certify clinical implementation. This paper presents an overview of the literature and the current knowledge of the usefulness of different types of machine learning systems in the assessment of premalignant and malignant esophageal lesions via conventional and advanced endoscopic procedures. This study makes a presentation of the artificial intelligence terminology and refers also to the most prominent recent research on computer-assisted diagnosis of neoplasia on Barrett's esophagus and early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms. Furthermore, this review highlights the main directions of future doctor-computer collaborations in which machines are expected to improve the quality of medical action and routine clinical workflow, thus reducing the burden on physicians.
doi_str_mv 10.3390/medicina56070364
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_47f4894275184a1eacd85c2b8067a42f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_47f4894275184a1eacd85c2b8067a42f</doaj_id><sourcerecordid>2427298774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIRD_gzgntkUuKP9deDkhRlUKkIDiUszXrHSeudu1g71biF_C3cZsQtRwse-x3nhnPTFW9o-SK85Z8HLH31geQDVGEN-JFdU4boRctFeLlk_NZdZHzHSGcScVeV2ecKaK54OfVn9sd1utxD3aqo6uXafKuIGGo12HCYfBbDBZrH-qpCFehj9nGvbf1MmfMecTw6Pcj4QhFHKDYEPr628la5bjfwRYLcoPZx5A_PcgzHpU38zQnfFO9cjBkfHvcL6ufN6vb66-Lzfcv6-vlZmEl09OCaUoIci0RXMclIuk7qhFpB7K1VlPXK960sixQFrFxqhctU53jlHVC8stqfeD2Ee7MPvkR0m8TwZvHi5i2BkoN7IBGKCd0K5iSVAugCLbX0rJOk0aBYK6wPh9Y-7krnbDlRwmGZ9DnL8HvzDbeGyWIaLQugA9HQIq_ZsyTGX22peoQMM7ZsBKctVopUaTkILUp5pzQncJQYh5mwfw_C8Xl_dP0Tg7_ms__AsWStEo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427298774</pqid></control><display><type>article</type><title>The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lazăr, Daniela Cornelia ; Avram, Mihaela Flavia ; Faur, Alexandra Corina ; Goldiş, Adrian ; Romoşan, Ioan ; Tăban, Sorina ; Cornianu, Mărioara</creator><creatorcontrib>Lazăr, Daniela Cornelia ; Avram, Mihaela Flavia ; Faur, Alexandra Corina ; Goldiş, Adrian ; Romoşan, Ioan ; Tăban, Sorina ; Cornianu, Mărioara</creatorcontrib><description>In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists, time-consuming procedures, lack of availability of advanced procedures, increasing workloads, and development of endoscopic mass screening programs. Recent research has tended toward computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional multicenter randomized trials and the development of existent database platforms are needed to certify clinical implementation. This paper presents an overview of the literature and the current knowledge of the usefulness of different types of machine learning systems in the assessment of premalignant and malignant esophageal lesions via conventional and advanced endoscopic procedures. This study makes a presentation of the artificial intelligence terminology and refers also to the most prominent recent research on computer-assisted diagnosis of neoplasia on Barrett's esophagus and early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms. Furthermore, this review highlights the main directions of future doctor-computer collaborations in which machines are expected to improve the quality of medical action and routine clinical workflow, thus reducing the burden on physicians.</description><identifier>ISSN: 1648-9144</identifier><identifier>ISSN: 1010-660X</identifier><identifier>EISSN: 1648-9144</identifier><identifier>DOI: 10.3390/medicina56070364</identifier><identifier>PMID: 32708343</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>artificial intelligence ; Artificial Intelligence - standards ; Artificial Intelligence - trends ; Barrett’s esophagus ; computer-assisted diagnosis ; Diagnosis, Computer-Assisted - methods ; Diagnosis, Computer-Assisted - standards ; Diagnosis, Computer-Assisted - statistics &amp; numerical data ; Early Detection of Cancer ; endoscopy ; Endoscopy - methods ; Endoscopy - standards ; esophageal cancer ; Esophageal Neoplasms - diagnosis ; Esophagus - abnormalities ; Esophagus - diagnostic imaging ; Humans ; Mass Screening - methods ; Mass Screening - standards ; Mass Screening - statistics &amp; numerical data ; Prognosis ; Review</subject><ispartof>Medicina (Kaunas, Lithuania), 2020-07, Vol.56 (7), p.364</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453</citedby><cites>FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453</cites><orcidid>0000-0001-5083-4079 ; 0000-0003-0670-8862 ; 0000-0001-8953-5076 ; 0000-0001-5675-5339 ; 0000-0002-6984-0046 ; 0000-0002-3971-2756 ; 0000-0001-8582-521X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404688/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404688/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32708343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazăr, Daniela Cornelia</creatorcontrib><creatorcontrib>Avram, Mihaela Flavia</creatorcontrib><creatorcontrib>Faur, Alexandra Corina</creatorcontrib><creatorcontrib>Goldiş, Adrian</creatorcontrib><creatorcontrib>Romoşan, Ioan</creatorcontrib><creatorcontrib>Tăban, Sorina</creatorcontrib><creatorcontrib>Cornianu, Mărioara</creatorcontrib><title>The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future</title><title>Medicina (Kaunas, Lithuania)</title><addtitle>Medicina (Kaunas)</addtitle><description>In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists, time-consuming procedures, lack of availability of advanced procedures, increasing workloads, and development of endoscopic mass screening programs. Recent research has tended toward computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional multicenter randomized trials and the development of existent database platforms are needed to certify clinical implementation. This paper presents an overview of the literature and the current knowledge of the usefulness of different types of machine learning systems in the assessment of premalignant and malignant esophageal lesions via conventional and advanced endoscopic procedures. This study makes a presentation of the artificial intelligence terminology and refers also to the most prominent recent research on computer-assisted diagnosis of neoplasia on Barrett's esophagus and early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms. Furthermore, this review highlights the main directions of future doctor-computer collaborations in which machines are expected to improve the quality of medical action and routine clinical workflow, thus reducing the burden on physicians.</description><subject>artificial intelligence</subject><subject>Artificial Intelligence - standards</subject><subject>Artificial Intelligence - trends</subject><subject>Barrett’s esophagus</subject><subject>computer-assisted diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnosis, Computer-Assisted - standards</subject><subject>Diagnosis, Computer-Assisted - statistics &amp; numerical data</subject><subject>Early Detection of Cancer</subject><subject>endoscopy</subject><subject>Endoscopy - methods</subject><subject>Endoscopy - standards</subject><subject>esophageal cancer</subject><subject>Esophageal Neoplasms - diagnosis</subject><subject>Esophagus - abnormalities</subject><subject>Esophagus - diagnostic imaging</subject><subject>Humans</subject><subject>Mass Screening - methods</subject><subject>Mass Screening - standards</subject><subject>Mass Screening - statistics &amp; numerical data</subject><subject>Prognosis</subject><subject>Review</subject><issn>1648-9144</issn><issn>1010-660X</issn><issn>1648-9144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhlcIRD_gzgntkUuKP9deDkhRlUKkIDiUszXrHSeudu1g71biF_C3cZsQtRwse-x3nhnPTFW9o-SK85Z8HLH31geQDVGEN-JFdU4boRctFeLlk_NZdZHzHSGcScVeV2ecKaK54OfVn9sd1utxD3aqo6uXafKuIGGo12HCYfBbDBZrH-qpCFehj9nGvbf1MmfMecTw6Pcj4QhFHKDYEPr628la5bjfwRYLcoPZx5A_PcgzHpU38zQnfFO9cjBkfHvcL6ufN6vb66-Lzfcv6-vlZmEl09OCaUoIci0RXMclIuk7qhFpB7K1VlPXK960sixQFrFxqhctU53jlHVC8stqfeD2Ee7MPvkR0m8TwZvHi5i2BkoN7IBGKCd0K5iSVAugCLbX0rJOk0aBYK6wPh9Y-7krnbDlRwmGZ9DnL8HvzDbeGyWIaLQugA9HQIq_ZsyTGX22peoQMM7ZsBKctVopUaTkILUp5pzQncJQYh5mwfw_C8Xl_dP0Tg7_ms__AsWStEo</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Lazăr, Daniela Cornelia</creator><creator>Avram, Mihaela Flavia</creator><creator>Faur, Alexandra Corina</creator><creator>Goldiş, Adrian</creator><creator>Romoşan, Ioan</creator><creator>Tăban, Sorina</creator><creator>Cornianu, Mărioara</creator><general>MDPI</general><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5083-4079</orcidid><orcidid>https://orcid.org/0000-0003-0670-8862</orcidid><orcidid>https://orcid.org/0000-0001-8953-5076</orcidid><orcidid>https://orcid.org/0000-0001-5675-5339</orcidid><orcidid>https://orcid.org/0000-0002-6984-0046</orcidid><orcidid>https://orcid.org/0000-0002-3971-2756</orcidid><orcidid>https://orcid.org/0000-0001-8582-521X</orcidid></search><sort><creationdate>20200721</creationdate><title>The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future</title><author>Lazăr, Daniela Cornelia ; Avram, Mihaela Flavia ; Faur, Alexandra Corina ; Goldiş, Adrian ; Romoşan, Ioan ; Tăban, Sorina ; Cornianu, Mărioara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>artificial intelligence</topic><topic>Artificial Intelligence - standards</topic><topic>Artificial Intelligence - trends</topic><topic>Barrett’s esophagus</topic><topic>computer-assisted diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnosis, Computer-Assisted - standards</topic><topic>Diagnosis, Computer-Assisted - statistics &amp; numerical data</topic><topic>Early Detection of Cancer</topic><topic>endoscopy</topic><topic>Endoscopy - methods</topic><topic>Endoscopy - standards</topic><topic>esophageal cancer</topic><topic>Esophageal Neoplasms - diagnosis</topic><topic>Esophagus - abnormalities</topic><topic>Esophagus - diagnostic imaging</topic><topic>Humans</topic><topic>Mass Screening - methods</topic><topic>Mass Screening - standards</topic><topic>Mass Screening - statistics &amp; numerical data</topic><topic>Prognosis</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazăr, Daniela Cornelia</creatorcontrib><creatorcontrib>Avram, Mihaela Flavia</creatorcontrib><creatorcontrib>Faur, Alexandra Corina</creatorcontrib><creatorcontrib>Goldiş, Adrian</creatorcontrib><creatorcontrib>Romoşan, Ioan</creatorcontrib><creatorcontrib>Tăban, Sorina</creatorcontrib><creatorcontrib>Cornianu, Mărioara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Medicina (Kaunas, Lithuania)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazăr, Daniela Cornelia</au><au>Avram, Mihaela Flavia</au><au>Faur, Alexandra Corina</au><au>Goldiş, Adrian</au><au>Romoşan, Ioan</au><au>Tăban, Sorina</au><au>Cornianu, Mărioara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future</atitle><jtitle>Medicina (Kaunas, Lithuania)</jtitle><addtitle>Medicina (Kaunas)</addtitle><date>2020-07-21</date><risdate>2020</risdate><volume>56</volume><issue>7</issue><spage>364</spage><pages>364-</pages><issn>1648-9144</issn><issn>1010-660X</issn><eissn>1648-9144</eissn><abstract>In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists, time-consuming procedures, lack of availability of advanced procedures, increasing workloads, and development of endoscopic mass screening programs. Recent research has tended toward computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional multicenter randomized trials and the development of existent database platforms are needed to certify clinical implementation. This paper presents an overview of the literature and the current knowledge of the usefulness of different types of machine learning systems in the assessment of premalignant and malignant esophageal lesions via conventional and advanced endoscopic procedures. This study makes a presentation of the artificial intelligence terminology and refers also to the most prominent recent research on computer-assisted diagnosis of neoplasia on Barrett's esophagus and early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms. Furthermore, this review highlights the main directions of future doctor-computer collaborations in which machines are expected to improve the quality of medical action and routine clinical workflow, thus reducing the burden on physicians.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>32708343</pmid><doi>10.3390/medicina56070364</doi><orcidid>https://orcid.org/0000-0001-5083-4079</orcidid><orcidid>https://orcid.org/0000-0003-0670-8862</orcidid><orcidid>https://orcid.org/0000-0001-8953-5076</orcidid><orcidid>https://orcid.org/0000-0001-5675-5339</orcidid><orcidid>https://orcid.org/0000-0002-6984-0046</orcidid><orcidid>https://orcid.org/0000-0002-3971-2756</orcidid><orcidid>https://orcid.org/0000-0001-8582-521X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1648-9144
ispartof Medicina (Kaunas, Lithuania), 2020-07, Vol.56 (7), p.364
issn 1648-9144
1010-660X
1648-9144
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_47f4894275184a1eacd85c2b8067a42f
source Publicly Available Content Database; PubMed Central
subjects artificial intelligence
Artificial Intelligence - standards
Artificial Intelligence - trends
Barrett’s esophagus
computer-assisted diagnosis
Diagnosis, Computer-Assisted - methods
Diagnosis, Computer-Assisted - standards
Diagnosis, Computer-Assisted - statistics & numerical data
Early Detection of Cancer
endoscopy
Endoscopy - methods
Endoscopy - standards
esophageal cancer
Esophageal Neoplasms - diagnosis
Esophagus - abnormalities
Esophagus - diagnostic imaging
Humans
Mass Screening - methods
Mass Screening - standards
Mass Screening - statistics & numerical data
Prognosis
Review
title The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Artificial%20Intelligence%20in%20the%20Endoscopic%20Assessment%20of%20Premalignant%20and%20Malignant%20Esophageal%20Lesions:%20Present%20and%20Future&rft.jtitle=Medicina%20(Kaunas,%20Lithuania)&rft.au=Laz%C4%83r,%20Daniela%20Cornelia&rft.date=2020-07-21&rft.volume=56&rft.issue=7&rft.spage=364&rft.pages=364-&rft.issn=1648-9144&rft.eissn=1648-9144&rft_id=info:doi/10.3390/medicina56070364&rft_dat=%3Cproquest_doaj_%3E2427298774%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2427298774&rft_id=info:pmid/32708343&rfr_iscdi=true