Loading…
The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future
In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optim...
Saved in:
Published in: | Medicina (Kaunas, Lithuania) Lithuania), 2020-07, Vol.56 (7), p.364 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453 |
container_end_page | |
container_issue | 7 |
container_start_page | 364 |
container_title | Medicina (Kaunas, Lithuania) |
container_volume | 56 |
creator | Lazăr, Daniela Cornelia Avram, Mihaela Flavia Faur, Alexandra Corina Goldiş, Adrian Romoşan, Ioan Tăban, Sorina Cornianu, Mărioara |
description | In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists, time-consuming procedures, lack of availability of advanced procedures, increasing workloads, and development of endoscopic mass screening programs. Recent research has tended toward computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional multicenter randomized trials and the development of existent database platforms are needed to certify clinical implementation. This paper presents an overview of the literature and the current knowledge of the usefulness of different types of machine learning systems in the assessment of premalignant and malignant esophageal lesions via conventional and advanced endoscopic procedures. This study makes a presentation of the artificial intelligence terminology and refers also to the most prominent recent research on computer-assisted diagnosis of neoplasia on Barrett's esophagus and early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms. Furthermore, this review highlights the main directions of future doctor-computer collaborations in which machines are expected to improve the quality of medical action and routine clinical workflow, thus reducing the burden on physicians. |
doi_str_mv | 10.3390/medicina56070364 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_47f4894275184a1eacd85c2b8067a42f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_47f4894275184a1eacd85c2b8067a42f</doaj_id><sourcerecordid>2427298774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIRD_gzgntkUuKP9deDkhRlUKkIDiUszXrHSeudu1g71biF_C3cZsQtRwse-x3nhnPTFW9o-SK85Z8HLH31geQDVGEN-JFdU4boRctFeLlk_NZdZHzHSGcScVeV2ecKaK54OfVn9sd1utxD3aqo6uXafKuIGGo12HCYfBbDBZrH-qpCFehj9nGvbf1MmfMecTw6Pcj4QhFHKDYEPr628la5bjfwRYLcoPZx5A_PcgzHpU38zQnfFO9cjBkfHvcL6ufN6vb66-Lzfcv6-vlZmEl09OCaUoIci0RXMclIuk7qhFpB7K1VlPXK960sixQFrFxqhctU53jlHVC8stqfeD2Ee7MPvkR0m8TwZvHi5i2BkoN7IBGKCd0K5iSVAugCLbX0rJOk0aBYK6wPh9Y-7krnbDlRwmGZ9DnL8HvzDbeGyWIaLQugA9HQIq_ZsyTGX22peoQMM7ZsBKctVopUaTkILUp5pzQncJQYh5mwfw_C8Xl_dP0Tg7_ms__AsWStEo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427298774</pqid></control><display><type>article</type><title>The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lazăr, Daniela Cornelia ; Avram, Mihaela Flavia ; Faur, Alexandra Corina ; Goldiş, Adrian ; Romoşan, Ioan ; Tăban, Sorina ; Cornianu, Mărioara</creator><creatorcontrib>Lazăr, Daniela Cornelia ; Avram, Mihaela Flavia ; Faur, Alexandra Corina ; Goldiş, Adrian ; Romoşan, Ioan ; Tăban, Sorina ; Cornianu, Mărioara</creatorcontrib><description>In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists, time-consuming procedures, lack of availability of advanced procedures, increasing workloads, and development of endoscopic mass screening programs. Recent research has tended toward computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional multicenter randomized trials and the development of existent database platforms are needed to certify clinical implementation. This paper presents an overview of the literature and the current knowledge of the usefulness of different types of machine learning systems in the assessment of premalignant and malignant esophageal lesions via conventional and advanced endoscopic procedures. This study makes a presentation of the artificial intelligence terminology and refers also to the most prominent recent research on computer-assisted diagnosis of neoplasia on Barrett's esophagus and early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms. Furthermore, this review highlights the main directions of future doctor-computer collaborations in which machines are expected to improve the quality of medical action and routine clinical workflow, thus reducing the burden on physicians.</description><identifier>ISSN: 1648-9144</identifier><identifier>ISSN: 1010-660X</identifier><identifier>EISSN: 1648-9144</identifier><identifier>DOI: 10.3390/medicina56070364</identifier><identifier>PMID: 32708343</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>artificial intelligence ; Artificial Intelligence - standards ; Artificial Intelligence - trends ; Barrett’s esophagus ; computer-assisted diagnosis ; Diagnosis, Computer-Assisted - methods ; Diagnosis, Computer-Assisted - standards ; Diagnosis, Computer-Assisted - statistics & numerical data ; Early Detection of Cancer ; endoscopy ; Endoscopy - methods ; Endoscopy - standards ; esophageal cancer ; Esophageal Neoplasms - diagnosis ; Esophagus - abnormalities ; Esophagus - diagnostic imaging ; Humans ; Mass Screening - methods ; Mass Screening - standards ; Mass Screening - statistics & numerical data ; Prognosis ; Review</subject><ispartof>Medicina (Kaunas, Lithuania), 2020-07, Vol.56 (7), p.364</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453</citedby><cites>FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453</cites><orcidid>0000-0001-5083-4079 ; 0000-0003-0670-8862 ; 0000-0001-8953-5076 ; 0000-0001-5675-5339 ; 0000-0002-6984-0046 ; 0000-0002-3971-2756 ; 0000-0001-8582-521X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404688/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404688/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,36990,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32708343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazăr, Daniela Cornelia</creatorcontrib><creatorcontrib>Avram, Mihaela Flavia</creatorcontrib><creatorcontrib>Faur, Alexandra Corina</creatorcontrib><creatorcontrib>Goldiş, Adrian</creatorcontrib><creatorcontrib>Romoşan, Ioan</creatorcontrib><creatorcontrib>Tăban, Sorina</creatorcontrib><creatorcontrib>Cornianu, Mărioara</creatorcontrib><title>The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future</title><title>Medicina (Kaunas, Lithuania)</title><addtitle>Medicina (Kaunas)</addtitle><description>In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists, time-consuming procedures, lack of availability of advanced procedures, increasing workloads, and development of endoscopic mass screening programs. Recent research has tended toward computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional multicenter randomized trials and the development of existent database platforms are needed to certify clinical implementation. This paper presents an overview of the literature and the current knowledge of the usefulness of different types of machine learning systems in the assessment of premalignant and malignant esophageal lesions via conventional and advanced endoscopic procedures. This study makes a presentation of the artificial intelligence terminology and refers also to the most prominent recent research on computer-assisted diagnosis of neoplasia on Barrett's esophagus and early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms. Furthermore, this review highlights the main directions of future doctor-computer collaborations in which machines are expected to improve the quality of medical action and routine clinical workflow, thus reducing the burden on physicians.</description><subject>artificial intelligence</subject><subject>Artificial Intelligence - standards</subject><subject>Artificial Intelligence - trends</subject><subject>Barrett’s esophagus</subject><subject>computer-assisted diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diagnosis, Computer-Assisted - standards</subject><subject>Diagnosis, Computer-Assisted - statistics & numerical data</subject><subject>Early Detection of Cancer</subject><subject>endoscopy</subject><subject>Endoscopy - methods</subject><subject>Endoscopy - standards</subject><subject>esophageal cancer</subject><subject>Esophageal Neoplasms - diagnosis</subject><subject>Esophagus - abnormalities</subject><subject>Esophagus - diagnostic imaging</subject><subject>Humans</subject><subject>Mass Screening - methods</subject><subject>Mass Screening - standards</subject><subject>Mass Screening - statistics & numerical data</subject><subject>Prognosis</subject><subject>Review</subject><issn>1648-9144</issn><issn>1010-660X</issn><issn>1648-9144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhlcIRD_gzgntkUuKP9deDkhRlUKkIDiUszXrHSeudu1g71biF_C3cZsQtRwse-x3nhnPTFW9o-SK85Z8HLH31geQDVGEN-JFdU4boRctFeLlk_NZdZHzHSGcScVeV2ecKaK54OfVn9sd1utxD3aqo6uXafKuIGGo12HCYfBbDBZrH-qpCFehj9nGvbf1MmfMecTw6Pcj4QhFHKDYEPr628la5bjfwRYLcoPZx5A_PcgzHpU38zQnfFO9cjBkfHvcL6ufN6vb66-Lzfcv6-vlZmEl09OCaUoIci0RXMclIuk7qhFpB7K1VlPXK960sixQFrFxqhctU53jlHVC8stqfeD2Ee7MPvkR0m8TwZvHi5i2BkoN7IBGKCd0K5iSVAugCLbX0rJOk0aBYK6wPh9Y-7krnbDlRwmGZ9DnL8HvzDbeGyWIaLQugA9HQIq_ZsyTGX22peoQMM7ZsBKctVopUaTkILUp5pzQncJQYh5mwfw_C8Xl_dP0Tg7_ms__AsWStEo</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Lazăr, Daniela Cornelia</creator><creator>Avram, Mihaela Flavia</creator><creator>Faur, Alexandra Corina</creator><creator>Goldiş, Adrian</creator><creator>Romoşan, Ioan</creator><creator>Tăban, Sorina</creator><creator>Cornianu, Mărioara</creator><general>MDPI</general><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5083-4079</orcidid><orcidid>https://orcid.org/0000-0003-0670-8862</orcidid><orcidid>https://orcid.org/0000-0001-8953-5076</orcidid><orcidid>https://orcid.org/0000-0001-5675-5339</orcidid><orcidid>https://orcid.org/0000-0002-6984-0046</orcidid><orcidid>https://orcid.org/0000-0002-3971-2756</orcidid><orcidid>https://orcid.org/0000-0001-8582-521X</orcidid></search><sort><creationdate>20200721</creationdate><title>The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future</title><author>Lazăr, Daniela Cornelia ; Avram, Mihaela Flavia ; Faur, Alexandra Corina ; Goldiş, Adrian ; Romoşan, Ioan ; Tăban, Sorina ; Cornianu, Mărioara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>artificial intelligence</topic><topic>Artificial Intelligence - standards</topic><topic>Artificial Intelligence - trends</topic><topic>Barrett’s esophagus</topic><topic>computer-assisted diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diagnosis, Computer-Assisted - standards</topic><topic>Diagnosis, Computer-Assisted - statistics & numerical data</topic><topic>Early Detection of Cancer</topic><topic>endoscopy</topic><topic>Endoscopy - methods</topic><topic>Endoscopy - standards</topic><topic>esophageal cancer</topic><topic>Esophageal Neoplasms - diagnosis</topic><topic>Esophagus - abnormalities</topic><topic>Esophagus - diagnostic imaging</topic><topic>Humans</topic><topic>Mass Screening - methods</topic><topic>Mass Screening - standards</topic><topic>Mass Screening - statistics & numerical data</topic><topic>Prognosis</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazăr, Daniela Cornelia</creatorcontrib><creatorcontrib>Avram, Mihaela Flavia</creatorcontrib><creatorcontrib>Faur, Alexandra Corina</creatorcontrib><creatorcontrib>Goldiş, Adrian</creatorcontrib><creatorcontrib>Romoşan, Ioan</creatorcontrib><creatorcontrib>Tăban, Sorina</creatorcontrib><creatorcontrib>Cornianu, Mărioara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Medicina (Kaunas, Lithuania)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazăr, Daniela Cornelia</au><au>Avram, Mihaela Flavia</au><au>Faur, Alexandra Corina</au><au>Goldiş, Adrian</au><au>Romoşan, Ioan</au><au>Tăban, Sorina</au><au>Cornianu, Mărioara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future</atitle><jtitle>Medicina (Kaunas, Lithuania)</jtitle><addtitle>Medicina (Kaunas)</addtitle><date>2020-07-21</date><risdate>2020</risdate><volume>56</volume><issue>7</issue><spage>364</spage><pages>364-</pages><issn>1648-9144</issn><issn>1010-660X</issn><eissn>1648-9144</eissn><abstract>In the gastroenterology field, the impact of artificial intelligence was investigated for the purposes of diagnostics, risk stratification of patients, improvement in quality of endoscopic procedures and early detection of neoplastic diseases, implementation of the best treatment strategy, and optimization of patient prognosis. Computer-assisted diagnostic systems to evaluate upper endoscopy images have recently emerged as a supporting tool in endoscopy due to the risks of misdiagnosis related to standard endoscopy and different expertise levels of endoscopists, time-consuming procedures, lack of availability of advanced procedures, increasing workloads, and development of endoscopic mass screening programs. Recent research has tended toward computerized, automatic, and real-time detection of lesions, which are approaches that offer utility in daily practice. Despite promising results, certain studies might overexaggerate the diagnostic accuracy of artificial systems, and several limitations remain to be overcome in the future. Therefore, additional multicenter randomized trials and the development of existent database platforms are needed to certify clinical implementation. This paper presents an overview of the literature and the current knowledge of the usefulness of different types of machine learning systems in the assessment of premalignant and malignant esophageal lesions via conventional and advanced endoscopic procedures. This study makes a presentation of the artificial intelligence terminology and refers also to the most prominent recent research on computer-assisted diagnosis of neoplasia on Barrett's esophagus and early esophageal squamous cell carcinoma, and prediction of invasion depth in esophageal neoplasms. Furthermore, this review highlights the main directions of future doctor-computer collaborations in which machines are expected to improve the quality of medical action and routine clinical workflow, thus reducing the burden on physicians.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>32708343</pmid><doi>10.3390/medicina56070364</doi><orcidid>https://orcid.org/0000-0001-5083-4079</orcidid><orcidid>https://orcid.org/0000-0003-0670-8862</orcidid><orcidid>https://orcid.org/0000-0001-8953-5076</orcidid><orcidid>https://orcid.org/0000-0001-5675-5339</orcidid><orcidid>https://orcid.org/0000-0002-6984-0046</orcidid><orcidid>https://orcid.org/0000-0002-3971-2756</orcidid><orcidid>https://orcid.org/0000-0001-8582-521X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1648-9144 |
ispartof | Medicina (Kaunas, Lithuania), 2020-07, Vol.56 (7), p.364 |
issn | 1648-9144 1010-660X 1648-9144 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_47f4894275184a1eacd85c2b8067a42f |
source | Publicly Available Content Database; PubMed Central |
subjects | artificial intelligence Artificial Intelligence - standards Artificial Intelligence - trends Barrett’s esophagus computer-assisted diagnosis Diagnosis, Computer-Assisted - methods Diagnosis, Computer-Assisted - standards Diagnosis, Computer-Assisted - statistics & numerical data Early Detection of Cancer endoscopy Endoscopy - methods Endoscopy - standards esophageal cancer Esophageal Neoplasms - diagnosis Esophagus - abnormalities Esophagus - diagnostic imaging Humans Mass Screening - methods Mass Screening - standards Mass Screening - statistics & numerical data Prognosis Review |
title | The Impact of Artificial Intelligence in the Endoscopic Assessment of Premalignant and Malignant Esophageal Lesions: Present and Future |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A07%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Artificial%20Intelligence%20in%20the%20Endoscopic%20Assessment%20of%20Premalignant%20and%20Malignant%20Esophageal%20Lesions:%20Present%20and%20Future&rft.jtitle=Medicina%20(Kaunas,%20Lithuania)&rft.au=Laz%C4%83r,%20Daniela%20Cornelia&rft.date=2020-07-21&rft.volume=56&rft.issue=7&rft.spage=364&rft.pages=364-&rft.issn=1648-9144&rft.eissn=1648-9144&rft_id=info:doi/10.3390/medicina56070364&rft_dat=%3Cproquest_doaj_%3E2427298774%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-28100e385eafb35ee0db18ee1ba59cc81fd73695369a7cee6f7d4927bf312b453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2427298774&rft_id=info:pmid/32708343&rfr_iscdi=true |