Loading…
Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations
Protein allostery is a biological process facilitated by spatially long-range intra-protein communication, whereby ligand binding or amino acid change at a distant site affects the active site remotely. Molecular dynamics (MD) simulation provides a powerful computational approach to probe the allost...
Saved in:
Published in: | Nature communications 2022-03, Vol.13 (1), p.1661-16, Article 1661 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-4310d70601a4eec7f1234a486030272c2574d151ef47d68b1a0238949069d76f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-4310d70601a4eec7f1234a486030272c2574d151ef47d68b1a0238949069d76f3 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 1661 |
container_title | Nature communications |
container_volume | 13 |
creator | Zhu, Jingxuan Wang, Juexin Han, Weiwei Xu, Dong |
description | Protein allostery is a biological process facilitated by spatially long-range intra-protein communication, whereby ligand binding or amino acid change at a distant site affects the active site remotely. Molecular dynamics (MD) simulation provides a powerful computational approach to probe the allosteric effect. However, current MD simulations cannot reach the time scales of whole allosteric processes. The advent of deep learning made it possible to evaluate both spatially short and long-range communications for understanding allostery. For this purpose, we applied a neural relational inference model based on a graph neural network, which adopts an encoder-decoder architecture to simultaneously infer latent interactions for probing protein allosteric processes as dynamic networks of interacting residues. From the MD trajectories, this model successfully learned the long-range interactions and pathways that can mediate the allosteric communications between distant sites in the Pin1, SOD1, and MEK1 systems. Furthermore, the model can discover allostery-related interactions earlier in the MD simulation trajectories and predict relative free energy changes upon mutations more accurately than other methods.
Here, the authors apply a neural relational inference model to infer dynamic networks of interacting residues in protein molecular dynamics simulations. The model can predict allosteric communication pathways and relative free energy changes upon mutations. |
doi_str_mv | 10.1038/s41467-022-29331-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_480423f564ad4edf9555abc41f556e3a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_480423f564ad4edf9555abc41f556e3a</doaj_id><sourcerecordid>2645473491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-4310d70601a4eec7f1234a486030272c2574d151ef47d68b1a0238949069d76f3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEvDH2E4uSKiCtlIFFzhbXme8eOXYi52A-u_xbkppOeCLx55nXn_M2zQvKXlLCe_fFaAgVUcY69jAOe34k-aUEaAdVYw_fRCfNOel7EgdfKA9wPPmhAsuaN-r0-bXZ1yyCW3GYGafYg19dJgxWmzn1AY0ObYhxW2XTdxia0JIZcbsbQXrbOyhrNRFu89pRl9jl9PUTimgXYLJ7XgbzeRtaYuflvWY8qJ55kwoeH43nzXfPn38enHV3Xy5vL74cNNZAWTugFMyKiIJNYBolaOMg4FeEk6YYpYJBSMVFB2oUfYbagjj_QADkcOopONnzfWqOyaz0_vsJ5NvdTJeHzdS3mqTZ28DaugJMO6EBDMCjm4QQpiNBeqEkMhN1Xq_au2XzYSjxTjXr3sk-jgT_Xe9TT91P0hQglaBN3cCOf1YsMx68sViCCZiWopmEgQoDsMBff0PuktLru05UqAokGGoFFspm1MpGd39ZSjRB5vo1Sa62kQfbaJ5LXr18Bn3JX9MUQG-AqWmas_z37P_I_sbbcvJZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644714099</pqid></control><display><type>article</type><title>Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhu, Jingxuan ; Wang, Juexin ; Han, Weiwei ; Xu, Dong</creator><creatorcontrib>Zhu, Jingxuan ; Wang, Juexin ; Han, Weiwei ; Xu, Dong</creatorcontrib><description>Protein allostery is a biological process facilitated by spatially long-range intra-protein communication, whereby ligand binding or amino acid change at a distant site affects the active site remotely. Molecular dynamics (MD) simulation provides a powerful computational approach to probe the allosteric effect. However, current MD simulations cannot reach the time scales of whole allosteric processes. The advent of deep learning made it possible to evaluate both spatially short and long-range communications for understanding allostery. For this purpose, we applied a neural relational inference model based on a graph neural network, which adopts an encoder-decoder architecture to simultaneously infer latent interactions for probing protein allosteric processes as dynamic networks of interacting residues. From the MD trajectories, this model successfully learned the long-range interactions and pathways that can mediate the allosteric communications between distant sites in the Pin1, SOD1, and MEK1 systems. Furthermore, the model can discover allostery-related interactions earlier in the MD simulation trajectories and predict relative free energy changes upon mutations more accurately than other methods.
Here, the authors apply a neural relational inference model to infer dynamic networks of interacting residues in protein molecular dynamics simulations. The model can predict allosteric communication pathways and relative free energy changes upon mutations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-29331-3</identifier><identifier>PMID: 35351887</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/114/2397 ; 631/45/173 ; Allosteric properties ; Allosteric Regulation ; Allosteric Site ; Amino acids ; Biological activity ; Catalytic Domain ; Coders ; Computer applications ; Deep learning ; Encoders-Decoders ; Free energy ; Graph neural networks ; Humanities and Social Sciences ; Inference ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; Mutation ; Neural networks ; Pin1 protein ; Proteins ; Proteins - chemistry ; Residues ; Science ; Science (multidisciplinary) ; Simulation ; Superoxide dismutase</subject><ispartof>Nature communications, 2022-03, Vol.13 (1), p.1661-16, Article 1661</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-4310d70601a4eec7f1234a486030272c2574d151ef47d68b1a0238949069d76f3</citedby><cites>FETCH-LOGICAL-c540t-4310d70601a4eec7f1234a486030272c2574d151ef47d68b1a0238949069d76f3</cites><orcidid>0000-0002-2260-4310 ; 0000-0002-1931-9316 ; 0000-0002-4809-0514 ; 0000-0002-3730-6623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2644714099/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2644714099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35351887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Jingxuan</creatorcontrib><creatorcontrib>Wang, Juexin</creatorcontrib><creatorcontrib>Han, Weiwei</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><title>Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Protein allostery is a biological process facilitated by spatially long-range intra-protein communication, whereby ligand binding or amino acid change at a distant site affects the active site remotely. Molecular dynamics (MD) simulation provides a powerful computational approach to probe the allosteric effect. However, current MD simulations cannot reach the time scales of whole allosteric processes. The advent of deep learning made it possible to evaluate both spatially short and long-range communications for understanding allostery. For this purpose, we applied a neural relational inference model based on a graph neural network, which adopts an encoder-decoder architecture to simultaneously infer latent interactions for probing protein allosteric processes as dynamic networks of interacting residues. From the MD trajectories, this model successfully learned the long-range interactions and pathways that can mediate the allosteric communications between distant sites in the Pin1, SOD1, and MEK1 systems. Furthermore, the model can discover allostery-related interactions earlier in the MD simulation trajectories and predict relative free energy changes upon mutations more accurately than other methods.
Here, the authors apply a neural relational inference model to infer dynamic networks of interacting residues in protein molecular dynamics simulations. The model can predict allosteric communication pathways and relative free energy changes upon mutations.</description><subject>119/118</subject><subject>631/114/2397</subject><subject>631/45/173</subject><subject>Allosteric properties</subject><subject>Allosteric Regulation</subject><subject>Allosteric Site</subject><subject>Amino acids</subject><subject>Biological activity</subject><subject>Catalytic Domain</subject><subject>Coders</subject><subject>Computer applications</subject><subject>Deep learning</subject><subject>Encoders-Decoders</subject><subject>Free energy</subject><subject>Graph neural networks</subject><subject>Humanities and Social Sciences</subject><subject>Inference</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Pin1 protein</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Residues</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Superoxide dismutase</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEvDH2E4uSKiCtlIFFzhbXme8eOXYi52A-u_xbkppOeCLx55nXn_M2zQvKXlLCe_fFaAgVUcY69jAOe34k-aUEaAdVYw_fRCfNOel7EgdfKA9wPPmhAsuaN-r0-bXZ1yyCW3GYGafYg19dJgxWmzn1AY0ObYhxW2XTdxia0JIZcbsbQXrbOyhrNRFu89pRl9jl9PUTimgXYLJ7XgbzeRtaYuflvWY8qJ55kwoeH43nzXfPn38enHV3Xy5vL74cNNZAWTugFMyKiIJNYBolaOMg4FeEk6YYpYJBSMVFB2oUfYbagjj_QADkcOopONnzfWqOyaz0_vsJ5NvdTJeHzdS3mqTZ28DaugJMO6EBDMCjm4QQpiNBeqEkMhN1Xq_au2XzYSjxTjXr3sk-jgT_Xe9TT91P0hQglaBN3cCOf1YsMx68sViCCZiWopmEgQoDsMBff0PuktLru05UqAokGGoFFspm1MpGd39ZSjRB5vo1Sa62kQfbaJ5LXr18Bn3JX9MUQG-AqWmas_z37P_I_sbbcvJZA</recordid><startdate>20220329</startdate><enddate>20220329</enddate><creator>Zhu, Jingxuan</creator><creator>Wang, Juexin</creator><creator>Han, Weiwei</creator><creator>Xu, Dong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2260-4310</orcidid><orcidid>https://orcid.org/0000-0002-1931-9316</orcidid><orcidid>https://orcid.org/0000-0002-4809-0514</orcidid><orcidid>https://orcid.org/0000-0002-3730-6623</orcidid></search><sort><creationdate>20220329</creationdate><title>Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations</title><author>Zhu, Jingxuan ; Wang, Juexin ; Han, Weiwei ; Xu, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-4310d70601a4eec7f1234a486030272c2574d151ef47d68b1a0238949069d76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>119/118</topic><topic>631/114/2397</topic><topic>631/45/173</topic><topic>Allosteric properties</topic><topic>Allosteric Regulation</topic><topic>Allosteric Site</topic><topic>Amino acids</topic><topic>Biological activity</topic><topic>Catalytic Domain</topic><topic>Coders</topic><topic>Computer applications</topic><topic>Deep learning</topic><topic>Encoders-Decoders</topic><topic>Free energy</topic><topic>Graph neural networks</topic><topic>Humanities and Social Sciences</topic><topic>Inference</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Pin1 protein</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Residues</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Superoxide dismutase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Jingxuan</creatorcontrib><creatorcontrib>Wang, Juexin</creatorcontrib><creatorcontrib>Han, Weiwei</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Jingxuan</au><au>Wang, Juexin</au><au>Han, Weiwei</au><au>Xu, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-03-29</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>1661</spage><epage>16</epage><pages>1661-16</pages><artnum>1661</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Protein allostery is a biological process facilitated by spatially long-range intra-protein communication, whereby ligand binding or amino acid change at a distant site affects the active site remotely. Molecular dynamics (MD) simulation provides a powerful computational approach to probe the allosteric effect. However, current MD simulations cannot reach the time scales of whole allosteric processes. The advent of deep learning made it possible to evaluate both spatially short and long-range communications for understanding allostery. For this purpose, we applied a neural relational inference model based on a graph neural network, which adopts an encoder-decoder architecture to simultaneously infer latent interactions for probing protein allosteric processes as dynamic networks of interacting residues. From the MD trajectories, this model successfully learned the long-range interactions and pathways that can mediate the allosteric communications between distant sites in the Pin1, SOD1, and MEK1 systems. Furthermore, the model can discover allostery-related interactions earlier in the MD simulation trajectories and predict relative free energy changes upon mutations more accurately than other methods.
Here, the authors apply a neural relational inference model to infer dynamic networks of interacting residues in protein molecular dynamics simulations. The model can predict allosteric communication pathways and relative free energy changes upon mutations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35351887</pmid><doi>10.1038/s41467-022-29331-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2260-4310</orcidid><orcidid>https://orcid.org/0000-0002-1931-9316</orcidid><orcidid>https://orcid.org/0000-0002-4809-0514</orcidid><orcidid>https://orcid.org/0000-0002-3730-6623</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-03, Vol.13 (1), p.1661-16, Article 1661 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_480423f564ad4edf9555abc41f556e3a |
source | PubMed (Medline); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 119/118 631/114/2397 631/45/173 Allosteric properties Allosteric Regulation Allosteric Site Amino acids Biological activity Catalytic Domain Coders Computer applications Deep learning Encoders-Decoders Free energy Graph neural networks Humanities and Social Sciences Inference Molecular dynamics Molecular Dynamics Simulation multidisciplinary Mutation Neural networks Pin1 protein Proteins Proteins - chemistry Residues Science Science (multidisciplinary) Simulation Superoxide dismutase |
title | Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20relational%20inference%20to%20learn%20long-range%20allosteric%20interactions%20in%20proteins%20from%20molecular%20dynamics%20simulations&rft.jtitle=Nature%20communications&rft.au=Zhu,%20Jingxuan&rft.date=2022-03-29&rft.volume=13&rft.issue=1&rft.spage=1661&rft.epage=16&rft.pages=1661-16&rft.artnum=1661&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-29331-3&rft_dat=%3Cproquest_doaj_%3E2645473491%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-4310d70601a4eec7f1234a486030272c2574d151ef47d68b1a0238949069d76f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2644714099&rft_id=info:pmid/35351887&rfr_iscdi=true |