Loading…

Structure-guided identification and characterization of potent inhibitors targeting PhoP and MtrA to combat mycobacteria

Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal transduction systems (TCSs) are signaling pathways involved in the regulation of v...

Full description

Saved in:
Bibliographic Details
Published in:Computational and structural biotechnology journal 2024-12, Vol.23, p.1477-1488
Main Authors: Su, Han-Li, Lai, Shu-Jung, Tsai, Keng-Chang, Fung, Kit-Man, Lung, Tse-Lin, Hsu, Hsing-Mien, Wu, Yi-Chen, Liu, Ching-Hui, Lai, Hui-Xiang, Lin, Jiun-Han, Tseng, Tien-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal transduction systems (TCSs) are signaling pathways involved in the regulation of various bacterial behaviors and responses to environmental stimuli. Applying specific inhibitors of TCSs can disrupt bacterial signaling, growth, and virulence, and can help combat drug-resistant TB. We conducted a comprehensive pharmacophore-based inhibitor screening and biochemical and biophysical examinations to identify, characterize, and validate potential inhibitors targeting the response regulators PhoP and MtrA of mycobacteria. The constructed pharmacophore model Phar-PR-n4 identified effective inhibitors of formation of the PhoP–DNA complex: ST132 (IC50 = 29 ± 1.6 µM) and ST166 (IC50 = 18 ± 1.3 µM). ST166 (KD = 18.4 ± 4.3 μM) and ST132 (KD = 14.5 ± 0.1 μM) strongly targeted PhoP in a slow-on, slow-off manner. The inhibitory potency and binding affinity of ST166 and ST132 for MtrAC were comparable to those of PhoP. Structural analyses and molecular dynamics simulations revealed that ST166 and ST132 mainly interact with the α8-helix and C-terminal β-hairpin of PhoP, with functionally essential residue hotspots for structure-based inhibitor optimization. Moreover, ST166 has in vitro antibacterial activity against Macrobacterium marinum. Thus, ST166, with its characteristic 1,2,5,6-tetrathiocane and terminal sulphonic groups, has excellent potential as a candidate for the development of novel antimicrobial agents to combat pathogenic mycobacteria. [Display omitted]
ISSN:2001-0370
2001-0370
DOI:10.1016/j.csbj.2024.04.005