Loading…

Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway

The majority of land plants have two suberized root barriers: the endodermis and the hypodermis (exodermis). Both barriers bear non-suberized passage cells that are thought to regulate water and nutrient exchange between the root and the soil. We learned a lot about endodermal passage cells, whereas...

Full description

Saved in:
Bibliographic Details
Published in:iScience 2019-07, Vol.17, p.144-154
Main Authors: Liu, Guowei, Stirnemann, Marina, Gübeli, Christian, Egloff, Susanne, Courty, Pierre-Emmanuel, Aubry, Sylvain, Vandenbussche, Michiel, Morel, Patrice, Reinhardt, Didier, Martinoia, Enrico, Borghi, Lorenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-1062b38329017977fc1259adc784bf7532c412b56bd5dd71064bc275f86af02c3
cites cdi_FETCH-LOGICAL-c555t-1062b38329017977fc1259adc784bf7532c412b56bd5dd71064bc275f86af02c3
container_end_page 154
container_issue
container_start_page 144
container_title iScience
container_volume 17
creator Liu, Guowei
Stirnemann, Marina
Gübeli, Christian
Egloff, Susanne
Courty, Pierre-Emmanuel
Aubry, Sylvain
Vandenbussche, Michiel
Morel, Patrice
Reinhardt, Didier
Martinoia, Enrico
Borghi, Lorenzo
description The majority of land plants have two suberized root barriers: the endodermis and the hypodermis (exodermis). Both barriers bear non-suberized passage cells that are thought to regulate water and nutrient exchange between the root and the soil. We learned a lot about endodermal passage cells, whereas our knowledge on hypodermal passage cells (HPCs) is still very scarce. Here we report on factors regulating the HPC number in Petunia roots. Strigolactones exhibit a positive effect, whereas supply of abscisic acid (ABA), ethylene, and auxin result in a strong reduction of the HPC number. Unexpectedly the strigolactone signaling mutant d14/dad2 showed significantly higher HPC numbers than the wild-type. In contrast, its mutant counterpart max2 of the heterodimeric receptor DAD2/MAX2 displayed a significant decrease in HPC number. A mutation in the Petunia karrikin sensor KAI2 exhibits drastically decreased HPC amounts, supporting the hypothesis that the dimeric KAI2/MAX2 receptor is central in determining the HPC number. [Display omitted] •Strigolactones induce the presence of hypodermal passage cells (HPC) in the root•ABA, ethylene, auxin, and karrikins negatively regulate the density of HPC•HPC density is regulated by the KAI2/MAX2 signaling pathway•Hormonal cross talk regulates HPC density and therefore hypodermis permeability Biological Sciences; Molecular Plant Pathology; Plant Biology; Plant Physiology
doi_str_mv 10.1016/j.isci.2019.06.024
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_48183e81d1be4d9bb8282bef22d36374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S258900421930207X</els_id><doaj_id>oai_doaj_org_article_48183e81d1be4d9bb8282bef22d36374</doaj_id><sourcerecordid>2253286430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-1062b38329017977fc1259adc784bf7532c412b56bd5dd71064bc275f86af02c3</originalsourceid><addsrcrecordid>eNp9kl9v0zAUxSMEYtPYF-AB-REeWuybxLElhFSNwSqKmBg8W_5zk7pK48xJC_32uGRMGw9Ilmxdn_u7OvbJspeMzhll_O1m7gfr50CZnFM-p1A8yU6hFHJGaQFPH5xPsvNh2FBKIa1C8ufZSc6g4rIUp5m5GaNvQqvtGDocyHWrD0R3ZLntQxx1N5JvoUXiO3Kz1r3vGnL5KziMW92SLyH269CG5kD2XhNNPi-WMPuAPXYOU-e1Htc_9eFF9qzW7YDnd_tZ9uPj5feLq9nq66flxWI1s2VZjjNGOZhc5CApq2RV1ZZBKbWzlShMXZU52IKBKblxpXNVkhfGQlXWguuags3PsuXEdUFvVB_9VseDCtqrP4UQG6Xj6G2LqhBM5CiYYwYLJ40RIMBgDeBynldFYr2fWP3ObNHZZCfq9hH08U3n16oJe8U5Y1JWCfBmAqz_abtarNSxRiEXSSf3LGlf3w2L4XaHw6i26W-xbXWHYTcogGRe8CKnSQqT1MYwDBHrezaj6pgLtVHHXKhjLhTlaczRzKuHZu5b_qYgCd5NAkzfs_cYVUJgZ9H5iHZM7-f_x_8NJmbH-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253286430</pqid></control><display><type>article</type><title>Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway</title><source>Open Access: PubMed Central</source><source>ScienceDirect®</source><creator>Liu, Guowei ; Stirnemann, Marina ; Gübeli, Christian ; Egloff, Susanne ; Courty, Pierre-Emmanuel ; Aubry, Sylvain ; Vandenbussche, Michiel ; Morel, Patrice ; Reinhardt, Didier ; Martinoia, Enrico ; Borghi, Lorenzo</creator><creatorcontrib>Liu, Guowei ; Stirnemann, Marina ; Gübeli, Christian ; Egloff, Susanne ; Courty, Pierre-Emmanuel ; Aubry, Sylvain ; Vandenbussche, Michiel ; Morel, Patrice ; Reinhardt, Didier ; Martinoia, Enrico ; Borghi, Lorenzo</creatorcontrib><description>The majority of land plants have two suberized root barriers: the endodermis and the hypodermis (exodermis). Both barriers bear non-suberized passage cells that are thought to regulate water and nutrient exchange between the root and the soil. We learned a lot about endodermal passage cells, whereas our knowledge on hypodermal passage cells (HPCs) is still very scarce. Here we report on factors regulating the HPC number in Petunia roots. Strigolactones exhibit a positive effect, whereas supply of abscisic acid (ABA), ethylene, and auxin result in a strong reduction of the HPC number. Unexpectedly the strigolactone signaling mutant d14/dad2 showed significantly higher HPC numbers than the wild-type. In contrast, its mutant counterpart max2 of the heterodimeric receptor DAD2/MAX2 displayed a significant decrease in HPC number. A mutation in the Petunia karrikin sensor KAI2 exhibits drastically decreased HPC amounts, supporting the hypothesis that the dimeric KAI2/MAX2 receptor is central in determining the HPC number. [Display omitted] •Strigolactones induce the presence of hypodermal passage cells (HPC) in the root•ABA, ethylene, auxin, and karrikins negatively regulate the density of HPC•HPC density is regulated by the KAI2/MAX2 signaling pathway•Hormonal cross talk regulates HPC density and therefore hypodermis permeability Biological Sciences; Molecular Plant Pathology; Plant Biology; Plant Physiology</description><identifier>ISSN: 2589-0042</identifier><identifier>EISSN: 2589-0042</identifier><identifier>DOI: 10.1016/j.isci.2019.06.024</identifier><identifier>PMID: 31276958</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biological Sciences ; Development Biology ; Life Sciences ; Molecular Plant Pathology ; Plant Biology ; Plant Physiology ; Vegetal Biology</subject><ispartof>iScience, 2019-07, Vol.17, p.144-154</ispartof><rights>2019 The Authors</rights><rights>Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-1062b38329017977fc1259adc784bf7532c412b56bd5dd71064bc275f86af02c3</citedby><cites>FETCH-LOGICAL-c555t-1062b38329017977fc1259adc784bf7532c412b56bd5dd71064bc275f86af02c3</cites><orcidid>0000-0002-9631-9694 ; 0000-0003-2789-7818 ; 0000-0002-4192-7369 ; 0000-0003-1690-8032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611997/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S258900421930207X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31276958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02389739$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Guowei</creatorcontrib><creatorcontrib>Stirnemann, Marina</creatorcontrib><creatorcontrib>Gübeli, Christian</creatorcontrib><creatorcontrib>Egloff, Susanne</creatorcontrib><creatorcontrib>Courty, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Aubry, Sylvain</creatorcontrib><creatorcontrib>Vandenbussche, Michiel</creatorcontrib><creatorcontrib>Morel, Patrice</creatorcontrib><creatorcontrib>Reinhardt, Didier</creatorcontrib><creatorcontrib>Martinoia, Enrico</creatorcontrib><creatorcontrib>Borghi, Lorenzo</creatorcontrib><title>Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway</title><title>iScience</title><addtitle>iScience</addtitle><description>The majority of land plants have two suberized root barriers: the endodermis and the hypodermis (exodermis). Both barriers bear non-suberized passage cells that are thought to regulate water and nutrient exchange between the root and the soil. We learned a lot about endodermal passage cells, whereas our knowledge on hypodermal passage cells (HPCs) is still very scarce. Here we report on factors regulating the HPC number in Petunia roots. Strigolactones exhibit a positive effect, whereas supply of abscisic acid (ABA), ethylene, and auxin result in a strong reduction of the HPC number. Unexpectedly the strigolactone signaling mutant d14/dad2 showed significantly higher HPC numbers than the wild-type. In contrast, its mutant counterpart max2 of the heterodimeric receptor DAD2/MAX2 displayed a significant decrease in HPC number. A mutation in the Petunia karrikin sensor KAI2 exhibits drastically decreased HPC amounts, supporting the hypothesis that the dimeric KAI2/MAX2 receptor is central in determining the HPC number. [Display omitted] •Strigolactones induce the presence of hypodermal passage cells (HPC) in the root•ABA, ethylene, auxin, and karrikins negatively regulate the density of HPC•HPC density is regulated by the KAI2/MAX2 signaling pathway•Hormonal cross talk regulates HPC density and therefore hypodermis permeability Biological Sciences; Molecular Plant Pathology; Plant Biology; Plant Physiology</description><subject>Biological Sciences</subject><subject>Development Biology</subject><subject>Life Sciences</subject><subject>Molecular Plant Pathology</subject><subject>Plant Biology</subject><subject>Plant Physiology</subject><subject>Vegetal Biology</subject><issn>2589-0042</issn><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kl9v0zAUxSMEYtPYF-AB-REeWuybxLElhFSNwSqKmBg8W_5zk7pK48xJC_32uGRMGw9Ilmxdn_u7OvbJspeMzhll_O1m7gfr50CZnFM-p1A8yU6hFHJGaQFPH5xPsvNh2FBKIa1C8ufZSc6g4rIUp5m5GaNvQqvtGDocyHWrD0R3ZLntQxx1N5JvoUXiO3Kz1r3vGnL5KziMW92SLyH269CG5kD2XhNNPi-WMPuAPXYOU-e1Htc_9eFF9qzW7YDnd_tZ9uPj5feLq9nq66flxWI1s2VZjjNGOZhc5CApq2RV1ZZBKbWzlShMXZU52IKBKblxpXNVkhfGQlXWguuags3PsuXEdUFvVB_9VseDCtqrP4UQG6Xj6G2LqhBM5CiYYwYLJ40RIMBgDeBynldFYr2fWP3ObNHZZCfq9hH08U3n16oJe8U5Y1JWCfBmAqz_abtarNSxRiEXSSf3LGlf3w2L4XaHw6i26W-xbXWHYTcogGRe8CKnSQqT1MYwDBHrezaj6pgLtVHHXKhjLhTlaczRzKuHZu5b_qYgCd5NAkzfs_cYVUJgZ9H5iHZM7-f_x_8NJmbH-Q</recordid><startdate>20190726</startdate><enddate>20190726</enddate><creator>Liu, Guowei</creator><creator>Stirnemann, Marina</creator><creator>Gübeli, Christian</creator><creator>Egloff, Susanne</creator><creator>Courty, Pierre-Emmanuel</creator><creator>Aubry, Sylvain</creator><creator>Vandenbussche, Michiel</creator><creator>Morel, Patrice</creator><creator>Reinhardt, Didier</creator><creator>Martinoia, Enrico</creator><creator>Borghi, Lorenzo</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9631-9694</orcidid><orcidid>https://orcid.org/0000-0003-2789-7818</orcidid><orcidid>https://orcid.org/0000-0002-4192-7369</orcidid><orcidid>https://orcid.org/0000-0003-1690-8032</orcidid></search><sort><creationdate>20190726</creationdate><title>Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway</title><author>Liu, Guowei ; Stirnemann, Marina ; Gübeli, Christian ; Egloff, Susanne ; Courty, Pierre-Emmanuel ; Aubry, Sylvain ; Vandenbussche, Michiel ; Morel, Patrice ; Reinhardt, Didier ; Martinoia, Enrico ; Borghi, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-1062b38329017977fc1259adc784bf7532c412b56bd5dd71064bc275f86af02c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological Sciences</topic><topic>Development Biology</topic><topic>Life Sciences</topic><topic>Molecular Plant Pathology</topic><topic>Plant Biology</topic><topic>Plant Physiology</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guowei</creatorcontrib><creatorcontrib>Stirnemann, Marina</creatorcontrib><creatorcontrib>Gübeli, Christian</creatorcontrib><creatorcontrib>Egloff, Susanne</creatorcontrib><creatorcontrib>Courty, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Aubry, Sylvain</creatorcontrib><creatorcontrib>Vandenbussche, Michiel</creatorcontrib><creatorcontrib>Morel, Patrice</creatorcontrib><creatorcontrib>Reinhardt, Didier</creatorcontrib><creatorcontrib>Martinoia, Enrico</creatorcontrib><creatorcontrib>Borghi, Lorenzo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guowei</au><au>Stirnemann, Marina</au><au>Gübeli, Christian</au><au>Egloff, Susanne</au><au>Courty, Pierre-Emmanuel</au><au>Aubry, Sylvain</au><au>Vandenbussche, Michiel</au><au>Morel, Patrice</au><au>Reinhardt, Didier</au><au>Martinoia, Enrico</au><au>Borghi, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway</atitle><jtitle>iScience</jtitle><addtitle>iScience</addtitle><date>2019-07-26</date><risdate>2019</risdate><volume>17</volume><spage>144</spage><epage>154</epage><pages>144-154</pages><issn>2589-0042</issn><eissn>2589-0042</eissn><abstract>The majority of land plants have two suberized root barriers: the endodermis and the hypodermis (exodermis). Both barriers bear non-suberized passage cells that are thought to regulate water and nutrient exchange between the root and the soil. We learned a lot about endodermal passage cells, whereas our knowledge on hypodermal passage cells (HPCs) is still very scarce. Here we report on factors regulating the HPC number in Petunia roots. Strigolactones exhibit a positive effect, whereas supply of abscisic acid (ABA), ethylene, and auxin result in a strong reduction of the HPC number. Unexpectedly the strigolactone signaling mutant d14/dad2 showed significantly higher HPC numbers than the wild-type. In contrast, its mutant counterpart max2 of the heterodimeric receptor DAD2/MAX2 displayed a significant decrease in HPC number. A mutation in the Petunia karrikin sensor KAI2 exhibits drastically decreased HPC amounts, supporting the hypothesis that the dimeric KAI2/MAX2 receptor is central in determining the HPC number. [Display omitted] •Strigolactones induce the presence of hypodermal passage cells (HPC) in the root•ABA, ethylene, auxin, and karrikins negatively regulate the density of HPC•HPC density is regulated by the KAI2/MAX2 signaling pathway•Hormonal cross talk regulates HPC density and therefore hypodermis permeability Biological Sciences; Molecular Plant Pathology; Plant Biology; Plant Physiology</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31276958</pmid><doi>10.1016/j.isci.2019.06.024</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9631-9694</orcidid><orcidid>https://orcid.org/0000-0003-2789-7818</orcidid><orcidid>https://orcid.org/0000-0002-4192-7369</orcidid><orcidid>https://orcid.org/0000-0003-1690-8032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2589-0042
ispartof iScience, 2019-07, Vol.17, p.144-154
issn 2589-0042
2589-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_48183e81d1be4d9bb8282bef22d36374
source Open Access: PubMed Central; ScienceDirect®
subjects Biological Sciences
Development Biology
Life Sciences
Molecular Plant Pathology
Plant Biology
Plant Physiology
Vegetal Biology
title Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strigolactones%20Play%20an%20Important%20Role%20in%20Shaping%20Exodermal%20Morphology%20via%20a%20KAI2-Dependent%20Pathway&rft.jtitle=iScience&rft.au=Liu,%20Guowei&rft.date=2019-07-26&rft.volume=17&rft.spage=144&rft.epage=154&rft.pages=144-154&rft.issn=2589-0042&rft.eissn=2589-0042&rft_id=info:doi/10.1016/j.isci.2019.06.024&rft_dat=%3Cproquest_doaj_%3E2253286430%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-1062b38329017977fc1259adc784bf7532c412b56bd5dd71064bc275f86af02c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253286430&rft_id=info:pmid/31276958&rfr_iscdi=true