Loading…

Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2015-01, Vol.15 (2), p.737-752
Main Authors: Schurman, M. I, Lee, T, Sun, Y, Schichtel, B. A, Kreidenweis, S. M, Collett Jr., J. L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m−3, avg. = 5.13 ± 2.72 μg m−3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9% and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/z 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ~10 years of meteorological, particle composition, and fire data.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-15-737-2015