Loading…
Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings
Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (...
Saved in:
Published in: | BMC genomics 2020-07, Vol.21 (1), p.523-523, Article 523 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973 |
---|---|
cites | cdi_FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973 |
container_end_page | 523 |
container_issue | 1 |
container_start_page | 523 |
container_title | BMC genomics |
container_volume | 21 |
creator | Vessal, Saeedreza Arefian, Mohammad Siddique, Kadambot H M |
description | Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype.
Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g
FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins-including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein-may play a functional role in drought tolerance in chickpea.
This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea. |
doi_str_mv | 10.1186/s12864-020-06930-2 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_48387061aea34d39a31130f29be29464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631913467</galeid><doaj_id>oai_doaj_org_article_48387061aea34d39a31130f29be29464</doaj_id><sourcerecordid>A631913467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973</originalsourceid><addsrcrecordid>eNptks1u1DAUhSMEoqXwAixQJDZ0keK_2MkGqaoojFQJBGVtOc51xkPGDrZnRN8ep1OqCUJe2Dr-7rF9fYriNUYXGDf8fcSk4axCBFWItxRV5ElxipnAFcGcPT1anxQvYtwghEVD6ufFCSWCCFrj0-LH1-AT-K3VZYA4eRchlsmXU_BDFqLdQ9nD-q4PKlnvyphmtbSuHEHtM-tNqddW_5xAlRGgH60b4svimVFjhFcP81lxe_3x9upzdfPl0-rq8qbSnPFU5Ut3uKOcG8BU1DUl2mCmG9QS0xtQPRWdQDU1QBBVpKMGdR1TpCUdh1bQs2J1sO292sgp2K0Kd9IrK-8FHwapQrJ6BMka2gjEsQJFWU9bRTGmyJC2A9IyzrLXh4PXtOu20GtwKahxYbrccXYtB7-XgraEC5wN3j0YBP9rBzHJrY0axlE58LsoCSMtqmvGZvTtP-jG74LLncpU_hZRC35EDSo_wDrj87l6NpWXnOIWU8bnHlz8h8qjh_yp3oGxWV8UnC8KMpPgdxrULka5-v5tyZIDq4OPMYB57AdGcs6gPGRQ5gzK-wxKkoveHHfyseRv6OgfHlzVIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435175761</pqid></control><display><type>article</type><title>Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Vessal, Saeedreza ; Arefian, Mohammad ; Siddique, Kadambot H M</creator><creatorcontrib>Vessal, Saeedreza ; Arefian, Mohammad ; Siddique, Kadambot H M</creatorcontrib><description>Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype.
Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g
FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins-including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein-may play a functional role in drought tolerance in chickpea.
This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-020-06930-2</identifier><identifier>PMID: 32727351</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Agricultural production ; Ascorbic acid ; ATP synthase ; Carbonic anhydrase ; Carbonic anhydrases ; Cellular stress response ; Chick peas ; Chickpea ; Chickpeas ; Chlorophyll ; Cicer - genetics ; Comparative analysis ; Comparative proteomics ; Dehydration ; Dehydration (Physiology) ; Dehydration stress ; Drought ; Drought resistance ; Droughts ; Electrolyte leakage ; Elongation ; Elongation factor EF-Tu ; Extracellular matrix ; Gene expression ; Genetic aspects ; Genomics ; Genotype & phenotype ; Genotypes ; Growth ; Kinases ; L-Ascorbate peroxidase ; Leaves ; Legumes ; Loam soils ; Malondialdehyde ; Metabolism ; Metalloproteinase ; Moisture content ; Nitrogen ; Parameter sensitivity ; Peroxidase ; Phosphogluconate dehydrogenase (decarboxylating) ; Photosynthesis ; Physiology ; Plant Leaves ; Plant Proteins - genetics ; Proline ; Protein biosynthesis ; Protein synthesis ; Proteins ; Proteomes ; Proteomics ; Rain ; Ribonucleoproteins ; Ribulose-bisphosphate carboxylase ; Seedlings ; Seedlings - genetics ; Seeds ; Stability analysis ; Stress, Physiological - genetics ; Time dependence ; Transcription ; Water content ; Water shortages</subject><ispartof>BMC genomics, 2020-07, Vol.21 (1), p.523-523, Article 523</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973</citedby><cites>FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392671/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2435175761?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32727351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vessal, Saeedreza</creatorcontrib><creatorcontrib>Arefian, Mohammad</creatorcontrib><creatorcontrib>Siddique, Kadambot H M</creatorcontrib><title>Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype.
Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g
FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins-including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein-may play a functional role in drought tolerance in chickpea.
This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.</description><subject>Agricultural production</subject><subject>Ascorbic acid</subject><subject>ATP synthase</subject><subject>Carbonic anhydrase</subject><subject>Carbonic anhydrases</subject><subject>Cellular stress response</subject><subject>Chick peas</subject><subject>Chickpea</subject><subject>Chickpeas</subject><subject>Chlorophyll</subject><subject>Cicer - genetics</subject><subject>Comparative analysis</subject><subject>Comparative proteomics</subject><subject>Dehydration</subject><subject>Dehydration (Physiology)</subject><subject>Dehydration stress</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Electrolyte leakage</subject><subject>Elongation</subject><subject>Elongation factor EF-Tu</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Growth</subject><subject>Kinases</subject><subject>L-Ascorbate peroxidase</subject><subject>Leaves</subject><subject>Legumes</subject><subject>Loam soils</subject><subject>Malondialdehyde</subject><subject>Metabolism</subject><subject>Metalloproteinase</subject><subject>Moisture content</subject><subject>Nitrogen</subject><subject>Parameter sensitivity</subject><subject>Peroxidase</subject><subject>Phosphogluconate dehydrogenase (decarboxylating)</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Plant Leaves</subject><subject>Plant Proteins - genetics</subject><subject>Proline</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Rain</subject><subject>Ribonucleoproteins</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Seedlings</subject><subject>Seedlings - genetics</subject><subject>Seeds</subject><subject>Stability analysis</subject><subject>Stress, Physiological - genetics</subject><subject>Time dependence</subject><subject>Transcription</subject><subject>Water content</subject><subject>Water shortages</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1u1DAUhSMEoqXwAixQJDZ0keK_2MkGqaoojFQJBGVtOc51xkPGDrZnRN8ep1OqCUJe2Dr-7rF9fYriNUYXGDf8fcSk4axCBFWItxRV5ElxipnAFcGcPT1anxQvYtwghEVD6ufFCSWCCFrj0-LH1-AT-K3VZYA4eRchlsmXU_BDFqLdQ9nD-q4PKlnvyphmtbSuHEHtM-tNqddW_5xAlRGgH60b4svimVFjhFcP81lxe_3x9upzdfPl0-rq8qbSnPFU5Ut3uKOcG8BU1DUl2mCmG9QS0xtQPRWdQDU1QBBVpKMGdR1TpCUdh1bQs2J1sO292sgp2K0Kd9IrK-8FHwapQrJ6BMka2gjEsQJFWU9bRTGmyJC2A9IyzrLXh4PXtOu20GtwKahxYbrccXYtB7-XgraEC5wN3j0YBP9rBzHJrY0axlE58LsoCSMtqmvGZvTtP-jG74LLncpU_hZRC35EDSo_wDrj87l6NpWXnOIWU8bnHlz8h8qjh_yp3oGxWV8UnC8KMpPgdxrULka5-v5tyZIDq4OPMYB57AdGcs6gPGRQ5gzK-wxKkoveHHfyseRv6OgfHlzVIA</recordid><startdate>20200729</startdate><enddate>20200729</enddate><creator>Vessal, Saeedreza</creator><creator>Arefian, Mohammad</creator><creator>Siddique, Kadambot H M</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200729</creationdate><title>Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings</title><author>Vessal, Saeedreza ; Arefian, Mohammad ; Siddique, Kadambot H M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural production</topic><topic>Ascorbic acid</topic><topic>ATP synthase</topic><topic>Carbonic anhydrase</topic><topic>Carbonic anhydrases</topic><topic>Cellular stress response</topic><topic>Chick peas</topic><topic>Chickpea</topic><topic>Chickpeas</topic><topic>Chlorophyll</topic><topic>Cicer - genetics</topic><topic>Comparative analysis</topic><topic>Comparative proteomics</topic><topic>Dehydration</topic><topic>Dehydration (Physiology)</topic><topic>Dehydration stress</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Electrolyte leakage</topic><topic>Elongation</topic><topic>Elongation factor EF-Tu</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Growth</topic><topic>Kinases</topic><topic>L-Ascorbate peroxidase</topic><topic>Leaves</topic><topic>Legumes</topic><topic>Loam soils</topic><topic>Malondialdehyde</topic><topic>Metabolism</topic><topic>Metalloproteinase</topic><topic>Moisture content</topic><topic>Nitrogen</topic><topic>Parameter sensitivity</topic><topic>Peroxidase</topic><topic>Phosphogluconate dehydrogenase (decarboxylating)</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Plant Leaves</topic><topic>Plant Proteins - genetics</topic><topic>Proline</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Rain</topic><topic>Ribonucleoproteins</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Seedlings</topic><topic>Seedlings - genetics</topic><topic>Seeds</topic><topic>Stability analysis</topic><topic>Stress, Physiological - genetics</topic><topic>Time dependence</topic><topic>Transcription</topic><topic>Water content</topic><topic>Water shortages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vessal, Saeedreza</creatorcontrib><creatorcontrib>Arefian, Mohammad</creatorcontrib><creatorcontrib>Siddique, Kadambot H M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vessal, Saeedreza</au><au>Arefian, Mohammad</au><au>Siddique, Kadambot H M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2020-07-29</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>523</spage><epage>523</epage><pages>523-523</pages><artnum>523</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype.
Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g
FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins-including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein-may play a functional role in drought tolerance in chickpea.
This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>32727351</pmid><doi>10.1186/s12864-020-06930-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2164 |
ispartof | BMC genomics, 2020-07, Vol.21 (1), p.523-523, Article 523 |
issn | 1471-2164 1471-2164 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_48387061aea34d39a31130f29be29464 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Agricultural production Ascorbic acid ATP synthase Carbonic anhydrase Carbonic anhydrases Cellular stress response Chick peas Chickpea Chickpeas Chlorophyll Cicer - genetics Comparative analysis Comparative proteomics Dehydration Dehydration (Physiology) Dehydration stress Drought Drought resistance Droughts Electrolyte leakage Elongation Elongation factor EF-Tu Extracellular matrix Gene expression Genetic aspects Genomics Genotype & phenotype Genotypes Growth Kinases L-Ascorbate peroxidase Leaves Legumes Loam soils Malondialdehyde Metabolism Metalloproteinase Moisture content Nitrogen Parameter sensitivity Peroxidase Phosphogluconate dehydrogenase (decarboxylating) Photosynthesis Physiology Plant Leaves Plant Proteins - genetics Proline Protein biosynthesis Protein synthesis Proteins Proteomes Proteomics Rain Ribonucleoproteins Ribulose-bisphosphate carboxylase Seedlings Seedlings - genetics Seeds Stability analysis Stress, Physiological - genetics Time dependence Transcription Water content Water shortages |
title | Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20responses%20to%20progressive%20dehydration%20stress%20in%20leaves%20of%20chickpea%20seedlings&rft.jtitle=BMC%20genomics&rft.au=Vessal,%20Saeedreza&rft.date=2020-07-29&rft.volume=21&rft.issue=1&rft.spage=523&rft.epage=523&rft.pages=523-523&rft.artnum=523&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-020-06930-2&rft_dat=%3Cgale_doaj_%3EA631913467%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435175761&rft_id=info:pmid/32727351&rft_galeid=A631913467&rfr_iscdi=true |