Loading…

Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings

Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2020-07, Vol.21 (1), p.523-523, Article 523
Main Authors: Vessal, Saeedreza, Arefian, Mohammad, Siddique, Kadambot H M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973
cites cdi_FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973
container_end_page 523
container_issue 1
container_start_page 523
container_title BMC genomics
container_volume 21
creator Vessal, Saeedreza
Arefian, Mohammad
Siddique, Kadambot H M
description Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype. Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins-including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein-may play a functional role in drought tolerance in chickpea. This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.
doi_str_mv 10.1186/s12864-020-06930-2
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_48387061aea34d39a31130f29be29464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A631913467</galeid><doaj_id>oai_doaj_org_article_48387061aea34d39a31130f29be29464</doaj_id><sourcerecordid>A631913467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973</originalsourceid><addsrcrecordid>eNptks1u1DAUhSMEoqXwAixQJDZ0keK_2MkGqaoojFQJBGVtOc51xkPGDrZnRN8ep1OqCUJe2Dr-7rF9fYriNUYXGDf8fcSk4axCBFWItxRV5ElxipnAFcGcPT1anxQvYtwghEVD6ufFCSWCCFrj0-LH1-AT-K3VZYA4eRchlsmXU_BDFqLdQ9nD-q4PKlnvyphmtbSuHEHtM-tNqddW_5xAlRGgH60b4svimVFjhFcP81lxe_3x9upzdfPl0-rq8qbSnPFU5Ut3uKOcG8BU1DUl2mCmG9QS0xtQPRWdQDU1QBBVpKMGdR1TpCUdh1bQs2J1sO292sgp2K0Kd9IrK-8FHwapQrJ6BMka2gjEsQJFWU9bRTGmyJC2A9IyzrLXh4PXtOu20GtwKahxYbrccXYtB7-XgraEC5wN3j0YBP9rBzHJrY0axlE58LsoCSMtqmvGZvTtP-jG74LLncpU_hZRC35EDSo_wDrj87l6NpWXnOIWU8bnHlz8h8qjh_yp3oGxWV8UnC8KMpPgdxrULka5-v5tyZIDq4OPMYB57AdGcs6gPGRQ5gzK-wxKkoveHHfyseRv6OgfHlzVIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435175761</pqid></control><display><type>article</type><title>Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Vessal, Saeedreza ; Arefian, Mohammad ; Siddique, Kadambot H M</creator><creatorcontrib>Vessal, Saeedreza ; Arefian, Mohammad ; Siddique, Kadambot H M</creatorcontrib><description>Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype. Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins-including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein-may play a functional role in drought tolerance in chickpea. This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-020-06930-2</identifier><identifier>PMID: 32727351</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Agricultural production ; Ascorbic acid ; ATP synthase ; Carbonic anhydrase ; Carbonic anhydrases ; Cellular stress response ; Chick peas ; Chickpea ; Chickpeas ; Chlorophyll ; Cicer - genetics ; Comparative analysis ; Comparative proteomics ; Dehydration ; Dehydration (Physiology) ; Dehydration stress ; Drought ; Drought resistance ; Droughts ; Electrolyte leakage ; Elongation ; Elongation factor EF-Tu ; Extracellular matrix ; Gene expression ; Genetic aspects ; Genomics ; Genotype &amp; phenotype ; Genotypes ; Growth ; Kinases ; L-Ascorbate peroxidase ; Leaves ; Legumes ; Loam soils ; Malondialdehyde ; Metabolism ; Metalloproteinase ; Moisture content ; Nitrogen ; Parameter sensitivity ; Peroxidase ; Phosphogluconate dehydrogenase (decarboxylating) ; Photosynthesis ; Physiology ; Plant Leaves ; Plant Proteins - genetics ; Proline ; Protein biosynthesis ; Protein synthesis ; Proteins ; Proteomes ; Proteomics ; Rain ; Ribonucleoproteins ; Ribulose-bisphosphate carboxylase ; Seedlings ; Seedlings - genetics ; Seeds ; Stability analysis ; Stress, Physiological - genetics ; Time dependence ; Transcription ; Water content ; Water shortages</subject><ispartof>BMC genomics, 2020-07, Vol.21 (1), p.523-523, Article 523</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973</citedby><cites>FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392671/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2435175761?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32727351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vessal, Saeedreza</creatorcontrib><creatorcontrib>Arefian, Mohammad</creatorcontrib><creatorcontrib>Siddique, Kadambot H M</creatorcontrib><title>Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype. Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins-including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein-may play a functional role in drought tolerance in chickpea. This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.</description><subject>Agricultural production</subject><subject>Ascorbic acid</subject><subject>ATP synthase</subject><subject>Carbonic anhydrase</subject><subject>Carbonic anhydrases</subject><subject>Cellular stress response</subject><subject>Chick peas</subject><subject>Chickpea</subject><subject>Chickpeas</subject><subject>Chlorophyll</subject><subject>Cicer - genetics</subject><subject>Comparative analysis</subject><subject>Comparative proteomics</subject><subject>Dehydration</subject><subject>Dehydration (Physiology)</subject><subject>Dehydration stress</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Electrolyte leakage</subject><subject>Elongation</subject><subject>Elongation factor EF-Tu</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Growth</subject><subject>Kinases</subject><subject>L-Ascorbate peroxidase</subject><subject>Leaves</subject><subject>Legumes</subject><subject>Loam soils</subject><subject>Malondialdehyde</subject><subject>Metabolism</subject><subject>Metalloproteinase</subject><subject>Moisture content</subject><subject>Nitrogen</subject><subject>Parameter sensitivity</subject><subject>Peroxidase</subject><subject>Phosphogluconate dehydrogenase (decarboxylating)</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Plant Leaves</subject><subject>Plant Proteins - genetics</subject><subject>Proline</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Rain</subject><subject>Ribonucleoproteins</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Seedlings</subject><subject>Seedlings - genetics</subject><subject>Seeds</subject><subject>Stability analysis</subject><subject>Stress, Physiological - genetics</subject><subject>Time dependence</subject><subject>Transcription</subject><subject>Water content</subject><subject>Water shortages</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1u1DAUhSMEoqXwAixQJDZ0keK_2MkGqaoojFQJBGVtOc51xkPGDrZnRN8ep1OqCUJe2Dr-7rF9fYriNUYXGDf8fcSk4axCBFWItxRV5ElxipnAFcGcPT1anxQvYtwghEVD6ufFCSWCCFrj0-LH1-AT-K3VZYA4eRchlsmXU_BDFqLdQ9nD-q4PKlnvyphmtbSuHEHtM-tNqddW_5xAlRGgH60b4svimVFjhFcP81lxe_3x9upzdfPl0-rq8qbSnPFU5Ut3uKOcG8BU1DUl2mCmG9QS0xtQPRWdQDU1QBBVpKMGdR1TpCUdh1bQs2J1sO292sgp2K0Kd9IrK-8FHwapQrJ6BMka2gjEsQJFWU9bRTGmyJC2A9IyzrLXh4PXtOu20GtwKahxYbrccXYtB7-XgraEC5wN3j0YBP9rBzHJrY0axlE58LsoCSMtqmvGZvTtP-jG74LLncpU_hZRC35EDSo_wDrj87l6NpWXnOIWU8bnHlz8h8qjh_yp3oGxWV8UnC8KMpPgdxrULka5-v5tyZIDq4OPMYB57AdGcs6gPGRQ5gzK-wxKkoveHHfyseRv6OgfHlzVIA</recordid><startdate>20200729</startdate><enddate>20200729</enddate><creator>Vessal, Saeedreza</creator><creator>Arefian, Mohammad</creator><creator>Siddique, Kadambot H M</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20200729</creationdate><title>Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings</title><author>Vessal, Saeedreza ; Arefian, Mohammad ; Siddique, Kadambot H M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural production</topic><topic>Ascorbic acid</topic><topic>ATP synthase</topic><topic>Carbonic anhydrase</topic><topic>Carbonic anhydrases</topic><topic>Cellular stress response</topic><topic>Chick peas</topic><topic>Chickpea</topic><topic>Chickpeas</topic><topic>Chlorophyll</topic><topic>Cicer - genetics</topic><topic>Comparative analysis</topic><topic>Comparative proteomics</topic><topic>Dehydration</topic><topic>Dehydration (Physiology)</topic><topic>Dehydration stress</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Electrolyte leakage</topic><topic>Elongation</topic><topic>Elongation factor EF-Tu</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Growth</topic><topic>Kinases</topic><topic>L-Ascorbate peroxidase</topic><topic>Leaves</topic><topic>Legumes</topic><topic>Loam soils</topic><topic>Malondialdehyde</topic><topic>Metabolism</topic><topic>Metalloproteinase</topic><topic>Moisture content</topic><topic>Nitrogen</topic><topic>Parameter sensitivity</topic><topic>Peroxidase</topic><topic>Phosphogluconate dehydrogenase (decarboxylating)</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Plant Leaves</topic><topic>Plant Proteins - genetics</topic><topic>Proline</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Rain</topic><topic>Ribonucleoproteins</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Seedlings</topic><topic>Seedlings - genetics</topic><topic>Seeds</topic><topic>Stability analysis</topic><topic>Stress, Physiological - genetics</topic><topic>Time dependence</topic><topic>Transcription</topic><topic>Water content</topic><topic>Water shortages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vessal, Saeedreza</creatorcontrib><creatorcontrib>Arefian, Mohammad</creatorcontrib><creatorcontrib>Siddique, Kadambot H M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vessal, Saeedreza</au><au>Arefian, Mohammad</au><au>Siddique, Kadambot H M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2020-07-29</date><risdate>2020</risdate><volume>21</volume><issue>1</issue><spage>523</spage><epage>523</epage><pages>523-523</pages><artnum>523</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Chickpea is an important food legume crop with high protein levels that is widely grown in rainfed areas prone to drought stress. Using an integrated approach, we describe the relative changes in some physiological parameters and the proteome of a drought-tolerant (MCC537, T) and drought-sensitive (MCC806, S) chickpea genotype. Under progressive dehydration stress, the T genotype relied on a higher relative leaf water content after 3 and 5 d (69.7 and 49.3%) than the S genotype (59.7 and 40.3%) to maintain photosynthetic activities and improve endurance under stress. This may have been facilitated by greater proline accumulation in the T genotype than the S genotype (14.3 and 11.1 μmol g FW at 5 d, respectively). Moreover, the T genotype had less electrolyte leakage and lower malondialdehyde contents than the S genotype under dehydration stress, indicating greater membrane stability and thus greater dehydration tolerance. The proteomic analysis further confirmed that, in response to dehydration, the T genotype activated more proteins related to photosynthesis, stress response, protein synthesis and degradation, and gene transcription and signaling than the S genotype. Of the time-point dependent proteins, the largest difference in protein abundance occurred at 5 d, with 29 spots increasing in the T genotype and 30 spots decreasing in the S genotype. Some of the identified proteins-including RuBisCo, ATP synthase, carbonic anhydrase, psbP domain-containing protein, L-ascorbate peroxidase, 6-phosphogluconate dehydrogenase, elongation factor Tu, zinc metalloprotease FTSH 2, ribonucleoproteins and auxin-binding protein-may play a functional role in drought tolerance in chickpea. This study highlights the significance of genotype- and time-specific proteins associated with dehydration stress and identifies potential resources for molecular drought tolerance improvement in chickpea.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>32727351</pmid><doi>10.1186/s12864-020-06930-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2020-07, Vol.21 (1), p.523-523, Article 523
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_48387061aea34d39a31130f29be29464
source Open Access: PubMed Central; Publicly Available Content Database
subjects Agricultural production
Ascorbic acid
ATP synthase
Carbonic anhydrase
Carbonic anhydrases
Cellular stress response
Chick peas
Chickpea
Chickpeas
Chlorophyll
Cicer - genetics
Comparative analysis
Comparative proteomics
Dehydration
Dehydration (Physiology)
Dehydration stress
Drought
Drought resistance
Droughts
Electrolyte leakage
Elongation
Elongation factor EF-Tu
Extracellular matrix
Gene expression
Genetic aspects
Genomics
Genotype & phenotype
Genotypes
Growth
Kinases
L-Ascorbate peroxidase
Leaves
Legumes
Loam soils
Malondialdehyde
Metabolism
Metalloproteinase
Moisture content
Nitrogen
Parameter sensitivity
Peroxidase
Phosphogluconate dehydrogenase (decarboxylating)
Photosynthesis
Physiology
Plant Leaves
Plant Proteins - genetics
Proline
Protein biosynthesis
Protein synthesis
Proteins
Proteomes
Proteomics
Rain
Ribonucleoproteins
Ribulose-bisphosphate carboxylase
Seedlings
Seedlings - genetics
Seeds
Stability analysis
Stress, Physiological - genetics
Time dependence
Transcription
Water content
Water shortages
title Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20responses%20to%20progressive%20dehydration%20stress%20in%20leaves%20of%20chickpea%20seedlings&rft.jtitle=BMC%20genomics&rft.au=Vessal,%20Saeedreza&rft.date=2020-07-29&rft.volume=21&rft.issue=1&rft.spage=523&rft.epage=523&rft.pages=523-523&rft.artnum=523&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-020-06930-2&rft_dat=%3Cgale_doaj_%3EA631913467%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c646t-693b1b366fe1375532cf14c8092fdfead37b7053fe203a2b3f0bb4a292b6e973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435175761&rft_id=info:pmid/32727351&rft_galeid=A631913467&rfr_iscdi=true