Loading…

Rapid India–Asia Initial Collision Between 50 and 48 Ma Along the Western Margin of the Indian Plate: Detrital Zircon Provenance Evidence

Constraining the collision timing of India and Asia requires reliable information from the coeval geological record along the ~2400 km long collisional margin. This study provides insights into the India–Asia collision at the westernmost margin of the Indian Plate using combined U-Pb geochronologica...

Full description

Saved in:
Bibliographic Details
Published in:Geosciences (Basel) 2024-11, Vol.14 (11), p.289
Main Authors: Qasim, Muhammad, Ashraf, Junaid, Ding, Lin, Tanoli, Javed Iqbal, Cai, Fulong, Ahmed Abbasi, Iftikhar, Jadoon, Saif-Ur-Rehman Khan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Constraining the collision timing of India and Asia requires reliable information from the coeval geological record along the ~2400 km long collisional margin. This study provides insights into the India–Asia collision at the westernmost margin of the Indian Plate using combined U-Pb geochronological data and sandstone petrography. The study area is situated in the vicinity of Fort Munro, Pakistan, along the western margin of the Indian Plate, and consists of the Paleocene Dunghan Formation and Eocene Ghazij Formation. The U-Pb ages of detrital zircons from the Dunghan Formation are mainly clustered between ~453 and 1100 Ma with a second minor cluster between ~1600 and 2600 Ma. These ages suggest that the major source contributing to the Dunghan Formation was likely derived from basement rocks and the cover sequence exposed mainly in Tethyan Himalaya (TH), Lesser Himalaya (LH), and Higher Himalayan (HH). Petrographic results suggest that the quartz-rich samples from the Dunghan Formation are mineralogically mature and have likely experienced log-distance transportation, which is possible in the case of an already established and well-developed river system delivering the sediments from the Craton Interior provenance. Samples of the overlying Ghazij Formation show a major detrital zircon age clustered at ~272–600 Ma in the lower part of the formation, comparable to the TH. In the middle part, the major cluster is at ~400–1100 Ma, and a minor cluster at ~1600–2600 Ma similar to the age patterns of TH, LH, and HH. However, in the uppermost part of the Ghazij Formation, ages of
ISSN:2076-3263
2076-3263
DOI:10.3390/geosciences14110289