Loading…

High-Pressure FDM 3D Printing in Nitrogen [Inert Gas] and Improved Mechanical Performance of Printed Components

Fundamentally, the mechanical characteristics of 3D-printed polymeric objects are determined by their fabrication circumstances. In contrast to traditional polymer processing processes, additive manufacturing requires no pressure during layer consolidation. This study looks at how a high-pressure au...

Full description

Saved in:
Bibliographic Details
Published in:Journal of composites science 2023-04, Vol.7 (4), p.153
Main Authors: Shaik, Yousuf Pasha, Schuster, Jens, Naidu, Naresh Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fundamentally, the mechanical characteristics of 3D-printed polymeric objects are determined by their fabrication circumstances. In contrast to traditional polymer processing processes, additive manufacturing requires no pressure during layer consolidation. This study looks at how a high-pressure autoclave chamber without oxygen affects layer consolidation throughout the fused deposition modelling process, as well as the mechanical qualities of the products. To attain high strength qualities for 3D-printed components such as injection-molded specimens, an experimental setup consisting of a 3D printer incorporated within a bespoke autoclave was designed. The autoclave can withstand pressures of up to 135 bar and temperatures of up to 185 °C. PLA 3D printing was carried out in the autoclave at two different pressures in compressed air and nitrogen atmospheres: 0 bar and 5 bar. Furthermore, injection molding was done using the same PLA material. Tensile, flexural, and Charpy tests were carried out on samples that were 3D printed and injection molded. In nitrogen, oxidation of the environment was prevented by autoclave preheating before printing, and autoclave pressure during printing considerably promotes layer consolidation. This imprinted mechanical strength on the 3D-printed items, which are virtually as strong as injection-molded components.
ISSN:2504-477X
2504-477X
DOI:10.3390/jcs7040153