Loading…

Investigation of factors affecting sodium alginate fouling mechanisms in a microfiltration process under non-constant-flux and non-constant-pressure conditions

Variations in transmembrane pressure and permeate flux are closely related to membrane fouling. In this study, a laboratory-scale submerged microfiltration system was used to investigate the influence of sodium alginate (SA) concentration and peristaltic pump rotation speed on the fouling under the...

Full description

Saved in:
Bibliographic Details
Published in:Water science and technology 2023-07, Vol.88 (1), p.169-184
Main Author: Liu, Ya-Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Variations in transmembrane pressure and permeate flux are closely related to membrane fouling. In this study, a laboratory-scale submerged microfiltration system was used to investigate the influence of sodium alginate (SA) concentration and peristaltic pump rotation speed on the fouling under the conditions of (1) the same driving force and non-aerated-PAC, (2) different driving forces and non-aerated-PAC, and (3) different driving forces and aerated-PAC. The results showed that the normalized transmembrane pressure (TMP') increased linearly with decreasing normalized permeate flux (J') during the early microfiltration stage regardless of the operating conditions, indicating that the SA microfiltration process controlled by the peristaltic pump was non-constant-flux and non-constant-pressure. The latter filtration stage was considered constant-pressure filtration when 200-1,200 mg/L of SA was filtrated at the same rotation speed. During filtration of 800 mg/L of SA under the non-aerated-PAC condition, the later filtration stage was considered constant-pressure filtration when the peristaltic pump rotated at slower speeds of 15 and 30 rpm. This approached constant-flux filtration when the peristaltic pump rotated at faster speeds of 60 and 90 rpm, and PAC-aeration scouring was an effective measure for mitigating membrane fouling by SA.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2023.206