Loading…

3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories

In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can be resource-intensive and prone to printing issues. This research introduces a digital twin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Sampedro, Gabriel Avelino, Putra, Made Adi Paramartha, Abisado, Mideth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943
cites cdi_FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Sampedro, Gabriel Avelino
Putra, Made Adi Paramartha
Abisado, Mideth
description In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can be resource-intensive and prone to printing issues. This research introduces a digital twin-based system that employs the innovative ensemble 3D-AmplifAI algorithm for fault monitoring in 3D printers. The system continuously monitors real-time temperature values and detects faults to prevent potential damage to the printer. Through an ensemble method, the 3D-AmplifAI algorithm combines multiple machine learning models to enhance fault detection in 3D printers. The digital twin environment, developed using Unity, serves as the bridge connecting the physical printer to the virtual world. Comparative evaluations against state-of-the-art algorithms, including Ridge Regression, XGBoost, InceptionTime, Time Series Transformer (TST), Rocket Ridge, Logistic Regression, Rocket XGBoost, ResNet, and Rocket Ridge Regression, demonstrate the superior performance of the 3D-AmplifAI algorithm in terms of accuracy, precision, recall, and F1-score.
doi_str_mv 10.1109/ACCESS.2023.3289536
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_487744e341cb4fe2849ec0ba6eb8b761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10163806</ieee_id><doaj_id>oai_doaj_org_article_487744e341cb4fe2849ec0ba6eb8b761</doaj_id><sourcerecordid>2831529418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943</originalsourceid><addsrcrecordid>eNpNUU1v1DAUjBBIVKW_AA6WOGfrrzg2t2i7LSttxWHL2XK8z4tXWXtxHBBH_jlOU6H68p7GM_OePVX1keAVIVjdduv1Zr9fUUzZilGpGibeVFeUCFWz0r991b-vbsbxhMuRBWraq-ovu6u782Xwrtt-QV1AmzDCuR8APRr7wwdAOzAp-HBE3eWSYgFRjujOH302A3r67QO6N9OQ0WMMPsc0M11MqDscfPa_Zp8wOWPz9HxV6PuzSbmI7MyG8UP1zplhhJuXel19v988rb_Wu28P23W3qy3HKteEWtVYZSQWzLm-VMC8YaZpqSHStBgkbuTBcScwNRSEkMIR7hiTpleKs-tqu_geojnpS_JljT86Gq-fgZiOuuzl7QCay7blHBgntucOqOQKLO6NgF72rSDF6_PiVX7k5wRj1qc4pVDW11Qy0lDFiSwstrBsiuOYwP2fSrCeo9NLdHqOTr9EV1SfFpUHgFcKItj89n-PJ5Q5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831529418</pqid></control><display><type>article</type><title>3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories</title><source>IEEE Xplore Open Access Journals</source><creator>Sampedro, Gabriel Avelino ; Putra, Made Adi Paramartha ; Abisado, Mideth</creator><creatorcontrib>Sampedro, Gabriel Avelino ; Putra, Made Adi Paramartha ; Abisado, Mideth</creatorcontrib><description>In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can be resource-intensive and prone to printing issues. This research introduces a digital twin-based system that employs the innovative ensemble 3D-AmplifAI algorithm for fault monitoring in 3D printers. The system continuously monitors real-time temperature values and detects faults to prevent potential damage to the printer. Through an ensemble method, the 3D-AmplifAI algorithm combines multiple machine learning models to enhance fault detection in 3D printers. The digital twin environment, developed using Unity, serves as the bridge connecting the physical printer to the virtual world. Comparative evaluations against state-of-the-art algorithms, including Ridge Regression, XGBoost, InceptionTime, Time Series Transformer (TST), Rocket Ridge, Logistic Regression, Rocket XGBoost, ResNet, and Rocket Ridge Regression, demonstrate the superior performance of the 3D-AmplifAI algorithm in terms of accuracy, precision, recall, and F1-score.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3289536</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3-D printers ; Additive Manufacturing ; Additives ; Algorithms ; Amplification ; Barriers ; Damage prevention ; Digital Twin ; Digital twins ; Ensemble Algorithm ; Fault detection ; Fault Monitoring ; Machine learning ; Manufacturing ; Monitoring ; Printers ; Regression ; State-of-the-art reviews ; Three dimensional printing ; Three-dimensional displays ; Virtual communities</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943</citedby><cites>FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943</cites><orcidid>0000-0002-6024-941X ; 0000-0003-2354-4409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10163806$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27612,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Sampedro, Gabriel Avelino</creatorcontrib><creatorcontrib>Putra, Made Adi Paramartha</creatorcontrib><creatorcontrib>Abisado, Mideth</creatorcontrib><title>3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can be resource-intensive and prone to printing issues. This research introduces a digital twin-based system that employs the innovative ensemble 3D-AmplifAI algorithm for fault monitoring in 3D printers. The system continuously monitors real-time temperature values and detects faults to prevent potential damage to the printer. Through an ensemble method, the 3D-AmplifAI algorithm combines multiple machine learning models to enhance fault detection in 3D printers. The digital twin environment, developed using Unity, serves as the bridge connecting the physical printer to the virtual world. Comparative evaluations against state-of-the-art algorithms, including Ridge Regression, XGBoost, InceptionTime, Time Series Transformer (TST), Rocket Ridge, Logistic Regression, Rocket XGBoost, ResNet, and Rocket Ridge Regression, demonstrate the superior performance of the 3D-AmplifAI algorithm in terms of accuracy, precision, recall, and F1-score.</description><subject>3-D printers</subject><subject>Additive Manufacturing</subject><subject>Additives</subject><subject>Algorithms</subject><subject>Amplification</subject><subject>Barriers</subject><subject>Damage prevention</subject><subject>Digital Twin</subject><subject>Digital twins</subject><subject>Ensemble Algorithm</subject><subject>Fault detection</subject><subject>Fault Monitoring</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Monitoring</subject><subject>Printers</subject><subject>Regression</subject><subject>State-of-the-art reviews</subject><subject>Three dimensional printing</subject><subject>Three-dimensional displays</subject><subject>Virtual communities</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v1DAUjBBIVKW_AA6WOGfrrzg2t2i7LSttxWHL2XK8z4tXWXtxHBBH_jlOU6H68p7GM_OePVX1keAVIVjdduv1Zr9fUUzZilGpGibeVFeUCFWz0r991b-vbsbxhMuRBWraq-ovu6u782Xwrtt-QV1AmzDCuR8APRr7wwdAOzAp-HBE3eWSYgFRjujOH302A3r67QO6N9OQ0WMMPsc0M11MqDscfPa_Zp8wOWPz9HxV6PuzSbmI7MyG8UP1zplhhJuXel19v988rb_Wu28P23W3qy3HKteEWtVYZSQWzLm-VMC8YaZpqSHStBgkbuTBcScwNRSEkMIR7hiTpleKs-tqu_geojnpS_JljT86Gq-fgZiOuuzl7QCay7blHBgntucOqOQKLO6NgF72rSDF6_PiVX7k5wRj1qc4pVDW11Qy0lDFiSwstrBsiuOYwP2fSrCeo9NLdHqOTr9EV1SfFpUHgFcKItj89n-PJ5Q5</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Sampedro, Gabriel Avelino</creator><creator>Putra, Made Adi Paramartha</creator><creator>Abisado, Mideth</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6024-941X</orcidid><orcidid>https://orcid.org/0000-0003-2354-4409</orcidid></search><sort><creationdate>20230101</creationdate><title>3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories</title><author>Sampedro, Gabriel Avelino ; Putra, Made Adi Paramartha ; Abisado, Mideth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Additive Manufacturing</topic><topic>Additives</topic><topic>Algorithms</topic><topic>Amplification</topic><topic>Barriers</topic><topic>Damage prevention</topic><topic>Digital Twin</topic><topic>Digital twins</topic><topic>Ensemble Algorithm</topic><topic>Fault detection</topic><topic>Fault Monitoring</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Monitoring</topic><topic>Printers</topic><topic>Regression</topic><topic>State-of-the-art reviews</topic><topic>Three dimensional printing</topic><topic>Three-dimensional displays</topic><topic>Virtual communities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sampedro, Gabriel Avelino</creatorcontrib><creatorcontrib>Putra, Made Adi Paramartha</creatorcontrib><creatorcontrib>Abisado, Mideth</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sampedro, Gabriel Avelino</au><au>Putra, Made Adi Paramartha</au><au>Abisado, Mideth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can be resource-intensive and prone to printing issues. This research introduces a digital twin-based system that employs the innovative ensemble 3D-AmplifAI algorithm for fault monitoring in 3D printers. The system continuously monitors real-time temperature values and detects faults to prevent potential damage to the printer. Through an ensemble method, the 3D-AmplifAI algorithm combines multiple machine learning models to enhance fault detection in 3D printers. The digital twin environment, developed using Unity, serves as the bridge connecting the physical printer to the virtual world. Comparative evaluations against state-of-the-art algorithms, including Ridge Regression, XGBoost, InceptionTime, Time Series Transformer (TST), Rocket Ridge, Logistic Regression, Rocket XGBoost, ResNet, and Rocket Ridge Regression, demonstrate the superior performance of the 3D-AmplifAI algorithm in terms of accuracy, precision, recall, and F1-score.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3289536</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6024-941X</orcidid><orcidid>https://orcid.org/0000-0003-2354-4409</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_487744e341cb4fe2849ec0ba6eb8b761
source IEEE Xplore Open Access Journals
subjects 3-D printers
Additive Manufacturing
Additives
Algorithms
Amplification
Barriers
Damage prevention
Digital Twin
Digital twins
Ensemble Algorithm
Fault detection
Fault Monitoring
Machine learning
Manufacturing
Monitoring
Printers
Regression
State-of-the-art reviews
Three dimensional printing
Three-dimensional displays
Virtual communities
title 3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-AmplifAI:%20An%20Ensemble%20Machine%20Learning%20Approach%20to%20Digital%20Twin%20Fault%20Monitoring%20for%20Additive%20Manufacturing%20in%20Smart%20Factories&rft.jtitle=IEEE%20access&rft.au=Sampedro,%20Gabriel%20Avelino&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3289536&rft_dat=%3Cproquest_doaj_%3E2831529418%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831529418&rft_id=info:pmid/&rft_ieee_id=10163806&rfr_iscdi=true