Loading…
3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories
In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can be resource-intensive and prone to printing issues. This research introduces a digital twin...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Sampedro, Gabriel Avelino Putra, Made Adi Paramartha Abisado, Mideth |
description | In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can be resource-intensive and prone to printing issues. This research introduces a digital twin-based system that employs the innovative ensemble 3D-AmplifAI algorithm for fault monitoring in 3D printers. The system continuously monitors real-time temperature values and detects faults to prevent potential damage to the printer. Through an ensemble method, the 3D-AmplifAI algorithm combines multiple machine learning models to enhance fault detection in 3D printers. The digital twin environment, developed using Unity, serves as the bridge connecting the physical printer to the virtual world. Comparative evaluations against state-of-the-art algorithms, including Ridge Regression, XGBoost, InceptionTime, Time Series Transformer (TST), Rocket Ridge, Logistic Regression, Rocket XGBoost, ResNet, and Rocket Ridge Regression, demonstrate the superior performance of the 3D-AmplifAI algorithm in terms of accuracy, precision, recall, and F1-score. |
doi_str_mv | 10.1109/ACCESS.2023.3289536 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_487744e341cb4fe2849ec0ba6eb8b761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10163806</ieee_id><doaj_id>oai_doaj_org_article_487744e341cb4fe2849ec0ba6eb8b761</doaj_id><sourcerecordid>2831529418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943</originalsourceid><addsrcrecordid>eNpNUU1v1DAUjBBIVKW_AA6WOGfrrzg2t2i7LSttxWHL2XK8z4tXWXtxHBBH_jlOU6H68p7GM_OePVX1keAVIVjdduv1Zr9fUUzZilGpGibeVFeUCFWz0r991b-vbsbxhMuRBWraq-ovu6u782Xwrtt-QV1AmzDCuR8APRr7wwdAOzAp-HBE3eWSYgFRjujOH302A3r67QO6N9OQ0WMMPsc0M11MqDscfPa_Zp8wOWPz9HxV6PuzSbmI7MyG8UP1zplhhJuXel19v988rb_Wu28P23W3qy3HKteEWtVYZSQWzLm-VMC8YaZpqSHStBgkbuTBcScwNRSEkMIR7hiTpleKs-tqu_geojnpS_JljT86Gq-fgZiOuuzl7QCay7blHBgntucOqOQKLO6NgF72rSDF6_PiVX7k5wRj1qc4pVDW11Qy0lDFiSwstrBsiuOYwP2fSrCeo9NLdHqOTr9EV1SfFpUHgFcKItj89n-PJ5Q5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831529418</pqid></control><display><type>article</type><title>3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories</title><source>IEEE Xplore Open Access Journals</source><creator>Sampedro, Gabriel Avelino ; Putra, Made Adi Paramartha ; Abisado, Mideth</creator><creatorcontrib>Sampedro, Gabriel Avelino ; Putra, Made Adi Paramartha ; Abisado, Mideth</creatorcontrib><description>In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can be resource-intensive and prone to printing issues. This research introduces a digital twin-based system that employs the innovative ensemble 3D-AmplifAI algorithm for fault monitoring in 3D printers. The system continuously monitors real-time temperature values and detects faults to prevent potential damage to the printer. Through an ensemble method, the 3D-AmplifAI algorithm combines multiple machine learning models to enhance fault detection in 3D printers. The digital twin environment, developed using Unity, serves as the bridge connecting the physical printer to the virtual world. Comparative evaluations against state-of-the-art algorithms, including Ridge Regression, XGBoost, InceptionTime, Time Series Transformer (TST), Rocket Ridge, Logistic Regression, Rocket XGBoost, ResNet, and Rocket Ridge Regression, demonstrate the superior performance of the 3D-AmplifAI algorithm in terms of accuracy, precision, recall, and F1-score.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3289536</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3-D printers ; Additive Manufacturing ; Additives ; Algorithms ; Amplification ; Barriers ; Damage prevention ; Digital Twin ; Digital twins ; Ensemble Algorithm ; Fault detection ; Fault Monitoring ; Machine learning ; Manufacturing ; Monitoring ; Printers ; Regression ; State-of-the-art reviews ; Three dimensional printing ; Three-dimensional displays ; Virtual communities</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943</citedby><cites>FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943</cites><orcidid>0000-0002-6024-941X ; 0000-0003-2354-4409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10163806$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27612,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Sampedro, Gabriel Avelino</creatorcontrib><creatorcontrib>Putra, Made Adi Paramartha</creatorcontrib><creatorcontrib>Abisado, Mideth</creatorcontrib><title>3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can be resource-intensive and prone to printing issues. This research introduces a digital twin-based system that employs the innovative ensemble 3D-AmplifAI algorithm for fault monitoring in 3D printers. The system continuously monitors real-time temperature values and detects faults to prevent potential damage to the printer. Through an ensemble method, the 3D-AmplifAI algorithm combines multiple machine learning models to enhance fault detection in 3D printers. The digital twin environment, developed using Unity, serves as the bridge connecting the physical printer to the virtual world. Comparative evaluations against state-of-the-art algorithms, including Ridge Regression, XGBoost, InceptionTime, Time Series Transformer (TST), Rocket Ridge, Logistic Regression, Rocket XGBoost, ResNet, and Rocket Ridge Regression, demonstrate the superior performance of the 3D-AmplifAI algorithm in terms of accuracy, precision, recall, and F1-score.</description><subject>3-D printers</subject><subject>Additive Manufacturing</subject><subject>Additives</subject><subject>Algorithms</subject><subject>Amplification</subject><subject>Barriers</subject><subject>Damage prevention</subject><subject>Digital Twin</subject><subject>Digital twins</subject><subject>Ensemble Algorithm</subject><subject>Fault detection</subject><subject>Fault Monitoring</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Monitoring</subject><subject>Printers</subject><subject>Regression</subject><subject>State-of-the-art reviews</subject><subject>Three dimensional printing</subject><subject>Three-dimensional displays</subject><subject>Virtual communities</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v1DAUjBBIVKW_AA6WOGfrrzg2t2i7LSttxWHL2XK8z4tXWXtxHBBH_jlOU6H68p7GM_OePVX1keAVIVjdduv1Zr9fUUzZilGpGibeVFeUCFWz0r991b-vbsbxhMuRBWraq-ovu6u782Xwrtt-QV1AmzDCuR8APRr7wwdAOzAp-HBE3eWSYgFRjujOH302A3r67QO6N9OQ0WMMPsc0M11MqDscfPa_Zp8wOWPz9HxV6PuzSbmI7MyG8UP1zplhhJuXel19v988rb_Wu28P23W3qy3HKteEWtVYZSQWzLm-VMC8YaZpqSHStBgkbuTBcScwNRSEkMIR7hiTpleKs-tqu_geojnpS_JljT86Gq-fgZiOuuzl7QCay7blHBgntucOqOQKLO6NgF72rSDF6_PiVX7k5wRj1qc4pVDW11Qy0lDFiSwstrBsiuOYwP2fSrCeo9NLdHqOTr9EV1SfFpUHgFcKItj89n-PJ5Q5</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Sampedro, Gabriel Avelino</creator><creator>Putra, Made Adi Paramartha</creator><creator>Abisado, Mideth</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6024-941X</orcidid><orcidid>https://orcid.org/0000-0003-2354-4409</orcidid></search><sort><creationdate>20230101</creationdate><title>3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories</title><author>Sampedro, Gabriel Avelino ; Putra, Made Adi Paramartha ; Abisado, Mideth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Additive Manufacturing</topic><topic>Additives</topic><topic>Algorithms</topic><topic>Amplification</topic><topic>Barriers</topic><topic>Damage prevention</topic><topic>Digital Twin</topic><topic>Digital twins</topic><topic>Ensemble Algorithm</topic><topic>Fault detection</topic><topic>Fault Monitoring</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Monitoring</topic><topic>Printers</topic><topic>Regression</topic><topic>State-of-the-art reviews</topic><topic>Three dimensional printing</topic><topic>Three-dimensional displays</topic><topic>Virtual communities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sampedro, Gabriel Avelino</creatorcontrib><creatorcontrib>Putra, Made Adi Paramartha</creatorcontrib><creatorcontrib>Abisado, Mideth</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sampedro, Gabriel Avelino</au><au>Putra, Made Adi Paramartha</au><au>Abisado, Mideth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the digital age, the digital twin eliminates physical barriers and risks, facilitating seamless activities in both real and virtual worlds. In the context of additive manufacturing, testing 3D printers can be resource-intensive and prone to printing issues. This research introduces a digital twin-based system that employs the innovative ensemble 3D-AmplifAI algorithm for fault monitoring in 3D printers. The system continuously monitors real-time temperature values and detects faults to prevent potential damage to the printer. Through an ensemble method, the 3D-AmplifAI algorithm combines multiple machine learning models to enhance fault detection in 3D printers. The digital twin environment, developed using Unity, serves as the bridge connecting the physical printer to the virtual world. Comparative evaluations against state-of-the-art algorithms, including Ridge Regression, XGBoost, InceptionTime, Time Series Transformer (TST), Rocket Ridge, Logistic Regression, Rocket XGBoost, ResNet, and Rocket Ridge Regression, demonstrate the superior performance of the 3D-AmplifAI algorithm in terms of accuracy, precision, recall, and F1-score.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3289536</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6024-941X</orcidid><orcidid>https://orcid.org/0000-0003-2354-4409</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_487744e341cb4fe2849ec0ba6eb8b761 |
source | IEEE Xplore Open Access Journals |
subjects | 3-D printers Additive Manufacturing Additives Algorithms Amplification Barriers Damage prevention Digital Twin Digital twins Ensemble Algorithm Fault detection Fault Monitoring Machine learning Manufacturing Monitoring Printers Regression State-of-the-art reviews Three dimensional printing Three-dimensional displays Virtual communities |
title | 3D-AmplifAI: An Ensemble Machine Learning Approach to Digital Twin Fault Monitoring for Additive Manufacturing in Smart Factories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-AmplifAI:%20An%20Ensemble%20Machine%20Learning%20Approach%20to%20Digital%20Twin%20Fault%20Monitoring%20for%20Additive%20Manufacturing%20in%20Smart%20Factories&rft.jtitle=IEEE%20access&rft.au=Sampedro,%20Gabriel%20Avelino&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3289536&rft_dat=%3Cproquest_doaj_%3E2831529418%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-12c95c9a8063ffba80e0453a572a18a70e8058df4f602a2e6686f14f338ab9943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831529418&rft_id=info:pmid/&rft_ieee_id=10163806&rfr_iscdi=true |