Loading…

Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model

Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM). This problem is of considerable interest when dealing with cooling of microelectronic devices, in situa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Mathematics 2011-01, Vol.2011 (1), p.1191-1204-067
Main Authors: Hadavand, Mahshid, Sousa, Antonio C. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493
cites cdi_FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493
container_end_page 1204-067
container_issue 1
container_start_page 1191
container_title Journal of Applied Mathematics
container_volume 2011
creator Hadavand, Mahshid
Sousa, Antonio C. M.
description Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM). This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.
doi_str_mv 10.1155/2011/538637
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_487e0343d68c4d43994d51c77258b66b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160908001_201112_201609100001_201609100001_1191_1204_067</airiti_id><doaj_id>oai_doaj_org_article_487e0343d68c4d43994d51c77258b66b</doaj_id><sourcerecordid>907945026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEEqVw4gtEXJBAoTP-G9-AFYVKi0DQlbhZE8fZ9SqJ2yRb1H56vJtVK7hw8djPPz-P_bLsJcI7RCnPGCCeSV4qrh9lJ6hKXQAI9jjNEaHQUv96mj0bxy0AA2nwJFv9DN2upSnEPo9NfrnxQxc7Wvd-Ci5fxP7Gu8Nm6HPKF3QTptt8NYZ-nU8bny9pSpzPP8Z2uuuo7_Ovsfbt8-xJQ-3oXxzrabY6_3S5-FIsv32-WHxYFiQVm4oKSqhRoSLOKoWNdxwqLwkqZNLVhmTjierSUWmkrpQm3hhdKu01QycMP80uZt860tZeDaGj4dZGCvYgxGFtaUgNtt6KUnvggteqdKIW3BhRS3RaM1lWSlXJ6_3sdTXEbXq037k21H-ZLlbLo3osW-oschRKAhMsWby-t7je-XGyXRidb1vqfdyN1oA2IqEqka_-IbdxN_Tpr2ypuRbCqD30dobcEMdx8M19Mwh2n7fd523nvBP9ZqY3oa_pd_gP_GOGKQxhCg-3f0-UApOCATycQGZnCQGO2sMC0aSBgbCgNP8DLwi-Zg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873744966</pqid></control><display><type>article</type><title>Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Hadavand, Mahshid ; Sousa, Antonio C. M.</creator><contributor>Sun, Shuyu</contributor><creatorcontrib>Hadavand, Mahshid ; Sousa, Antonio C. M. ; Sun, Shuyu</creatorcontrib><description>Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM). This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2011/538637</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><subject>Computer simulation ; Convection ; Convection modes ; Cooling ; Gravity ; Heat transfer ; Holes ; Magnetic fields ; Mathematical models ; Nanoparticles ; Simulation ; Studies ; Temperature</subject><ispartof>Journal of Applied Mathematics, 2011-01, Vol.2011 (1), p.1191-1204-067</ispartof><rights>Copyright © 2011 Mahshid Hadavand and Antonio C. M. Sousa.</rights><rights>Copyright © 2011 Mahshid Hadavand and Antonio C. M. Sousa. Mahshid Hadavand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2011 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493</citedby><cites>FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/873744966/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/873744966?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><contributor>Sun, Shuyu</contributor><creatorcontrib>Hadavand, Mahshid</creatorcontrib><creatorcontrib>Sousa, Antonio C. M.</creatorcontrib><title>Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model</title><title>Journal of Applied Mathematics</title><description>Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM). This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.</description><subject>Computer simulation</subject><subject>Convection</subject><subject>Convection modes</subject><subject>Cooling</subject><subject>Gravity</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>Simulation</subject><subject>Studies</subject><subject>Temperature</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU9v1DAQxSMEEqVw4gtEXJBAoTP-G9-AFYVKi0DQlbhZE8fZ9SqJ2yRb1H56vJtVK7hw8djPPz-P_bLsJcI7RCnPGCCeSV4qrh9lJ6hKXQAI9jjNEaHQUv96mj0bxy0AA2nwJFv9DN2upSnEPo9NfrnxQxc7Wvd-Ci5fxP7Gu8Nm6HPKF3QTptt8NYZ-nU8bny9pSpzPP8Z2uuuo7_Ovsfbt8-xJQ-3oXxzrabY6_3S5-FIsv32-WHxYFiQVm4oKSqhRoSLOKoWNdxwqLwkqZNLVhmTjierSUWmkrpQm3hhdKu01QycMP80uZt860tZeDaGj4dZGCvYgxGFtaUgNtt6KUnvggteqdKIW3BhRS3RaM1lWSlXJ6_3sdTXEbXq037k21H-ZLlbLo3osW-oschRKAhMsWby-t7je-XGyXRidb1vqfdyN1oA2IqEqka_-IbdxN_Tpr2ypuRbCqD30dobcEMdx8M19Mwh2n7fd523nvBP9ZqY3oa_pd_gP_GOGKQxhCg-3f0-UApOCATycQGZnCQGO2sMC0aSBgbCgNP8DLwi-Zg</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Hadavand, Mahshid</creator><creator>Sousa, Antonio C. M.</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20110101</creationdate><title>Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model</title><author>Hadavand, Mahshid ; Sousa, Antonio C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Convection</topic><topic>Convection modes</topic><topic>Cooling</topic><topic>Gravity</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>Simulation</topic><topic>Studies</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadavand, Mahshid</creatorcontrib><creatorcontrib>Sousa, Antonio C. M.</creatorcontrib><collection>Chinese Electronic Periodical Services (CEPS)</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadavand, Mahshid</au><au>Sousa, Antonio C. M.</au><addau>Sun, Shuyu</addau><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><issue>1</issue><spage>1191</spage><epage>1204-067</epage><pages>1191-1204-067</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM). This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2011/538637</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of Applied Mathematics, 2011-01, Vol.2011 (1), p.1191-1204-067
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_487e0343d68c4d43994d51c77258b66b
source Wiley Online Library Open Access; Publicly Available Content Database; IngentaConnect Journals
subjects Computer simulation
Convection
Convection modes
Cooling
Gravity
Heat transfer
Holes
Magnetic fields
Mathematical models
Nanoparticles
Simulation
Studies
Temperature
title Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T21%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Thermomagnetic%20Convection%20in%20a%20Cavity%20Using%20the%20Lattice%20Boltzmann%20Model&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Hadavand,%20Mahshid&rft.date=2011-01-01&rft.volume=2011&rft.issue=1&rft.spage=1191&rft.epage=1204-067&rft.pages=1191-1204-067&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2011/538637&rft_dat=%3Cproquest_doaj_%3E907945026%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=873744966&rft_id=info:pmid/&rft_airiti_id=P20160908001_201112_201609100001_201609100001_1191_1204_067&rfr_iscdi=true