Loading…
Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model
Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM). This problem is of considerable interest when dealing with cooling of microelectronic devices, in situa...
Saved in:
Published in: | Journal of Applied Mathematics 2011-01, Vol.2011 (1), p.1191-1204-067 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493 |
---|---|
cites | cdi_FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493 |
container_end_page | 1204-067 |
container_issue | 1 |
container_start_page | 1191 |
container_title | Journal of Applied Mathematics |
container_volume | 2011 |
creator | Hadavand, Mahshid Sousa, Antonio C. M. |
description | Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM). This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid. |
doi_str_mv | 10.1155/2011/538637 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_487e0343d68c4d43994d51c77258b66b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160908001_201112_201609100001_201609100001_1191_1204_067</airiti_id><doaj_id>oai_doaj_org_article_487e0343d68c4d43994d51c77258b66b</doaj_id><sourcerecordid>907945026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEEqVw4gtEXJBAoTP-G9-AFYVKi0DQlbhZE8fZ9SqJ2yRb1H56vJtVK7hw8djPPz-P_bLsJcI7RCnPGCCeSV4qrh9lJ6hKXQAI9jjNEaHQUv96mj0bxy0AA2nwJFv9DN2upSnEPo9NfrnxQxc7Wvd-Ci5fxP7Gu8Nm6HPKF3QTptt8NYZ-nU8bny9pSpzPP8Z2uuuo7_Ovsfbt8-xJQ-3oXxzrabY6_3S5-FIsv32-WHxYFiQVm4oKSqhRoSLOKoWNdxwqLwkqZNLVhmTjierSUWmkrpQm3hhdKu01QycMP80uZt860tZeDaGj4dZGCvYgxGFtaUgNtt6KUnvggteqdKIW3BhRS3RaM1lWSlXJ6_3sdTXEbXq037k21H-ZLlbLo3osW-oschRKAhMsWby-t7je-XGyXRidb1vqfdyN1oA2IqEqka_-IbdxN_Tpr2ypuRbCqD30dobcEMdx8M19Mwh2n7fd523nvBP9ZqY3oa_pd_gP_GOGKQxhCg-3f0-UApOCATycQGZnCQGO2sMC0aSBgbCgNP8DLwi-Zg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873744966</pqid></control><display><type>article</type><title>Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Hadavand, Mahshid ; Sousa, Antonio C. M.</creator><contributor>Sun, Shuyu</contributor><creatorcontrib>Hadavand, Mahshid ; Sousa, Antonio C. M. ; Sun, Shuyu</creatorcontrib><description>Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM). This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2011/538637</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><subject>Computer simulation ; Convection ; Convection modes ; Cooling ; Gravity ; Heat transfer ; Holes ; Magnetic fields ; Mathematical models ; Nanoparticles ; Simulation ; Studies ; Temperature</subject><ispartof>Journal of Applied Mathematics, 2011-01, Vol.2011 (1), p.1191-1204-067</ispartof><rights>Copyright © 2011 Mahshid Hadavand and Antonio C. M. Sousa.</rights><rights>Copyright © 2011 Mahshid Hadavand and Antonio C. M. Sousa. Mahshid Hadavand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2011 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493</citedby><cites>FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/873744966/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/873744966?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><contributor>Sun, Shuyu</contributor><creatorcontrib>Hadavand, Mahshid</creatorcontrib><creatorcontrib>Sousa, Antonio C. M.</creatorcontrib><title>Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model</title><title>Journal of Applied Mathematics</title><description>Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM). This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.</description><subject>Computer simulation</subject><subject>Convection</subject><subject>Convection modes</subject><subject>Cooling</subject><subject>Gravity</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>Simulation</subject><subject>Studies</subject><subject>Temperature</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU9v1DAQxSMEEqVw4gtEXJBAoTP-G9-AFYVKi0DQlbhZE8fZ9SqJ2yRb1H56vJtVK7hw8djPPz-P_bLsJcI7RCnPGCCeSV4qrh9lJ6hKXQAI9jjNEaHQUv96mj0bxy0AA2nwJFv9DN2upSnEPo9NfrnxQxc7Wvd-Ci5fxP7Gu8Nm6HPKF3QTptt8NYZ-nU8bny9pSpzPP8Z2uuuo7_Ovsfbt8-xJQ-3oXxzrabY6_3S5-FIsv32-WHxYFiQVm4oKSqhRoSLOKoWNdxwqLwkqZNLVhmTjierSUWmkrpQm3hhdKu01QycMP80uZt860tZeDaGj4dZGCvYgxGFtaUgNtt6KUnvggteqdKIW3BhRS3RaM1lWSlXJ6_3sdTXEbXq037k21H-ZLlbLo3osW-oschRKAhMsWby-t7je-XGyXRidb1vqfdyN1oA2IqEqka_-IbdxN_Tpr2ypuRbCqD30dobcEMdx8M19Mwh2n7fd523nvBP9ZqY3oa_pd_gP_GOGKQxhCg-3f0-UApOCATycQGZnCQGO2sMC0aSBgbCgNP8DLwi-Zg</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Hadavand, Mahshid</creator><creator>Sousa, Antonio C. M.</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20110101</creationdate><title>Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model</title><author>Hadavand, Mahshid ; Sousa, Antonio C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Convection</topic><topic>Convection modes</topic><topic>Cooling</topic><topic>Gravity</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>Simulation</topic><topic>Studies</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadavand, Mahshid</creatorcontrib><creatorcontrib>Sousa, Antonio C. M.</creatorcontrib><collection>Chinese Electronic Periodical Services (CEPS)</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadavand, Mahshid</au><au>Sousa, Antonio C. M.</au><addau>Sun, Shuyu</addau><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><issue>1</issue><spage>1191</spage><epage>1204-067</epage><pages>1191-1204-067</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM). This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2011/538637</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-757X |
ispartof | Journal of Applied Mathematics, 2011-01, Vol.2011 (1), p.1191-1204-067 |
issn | 1110-757X 1687-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_487e0343d68c4d43994d51c77258b66b |
source | Wiley Online Library Open Access; Publicly Available Content Database; IngentaConnect Journals |
subjects | Computer simulation Convection Convection modes Cooling Gravity Heat transfer Holes Magnetic fields Mathematical models Nanoparticles Simulation Studies Temperature |
title | Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T21%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Thermomagnetic%20Convection%20in%20a%20Cavity%20Using%20the%20Lattice%20Boltzmann%20Model&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Hadavand,%20Mahshid&rft.date=2011-01-01&rft.volume=2011&rft.issue=1&rft.spage=1191&rft.epage=1204-067&rft.pages=1191-1204-067&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2011/538637&rft_dat=%3Cproquest_doaj_%3E907945026%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a562t-b080d1616a32b61fec30be5a0b125cd9a5feaad8ca8957b67a3f97867e721c493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=873744966&rft_id=info:pmid/&rft_airiti_id=P20160908001_201112_201609100001_201609100001_1191_1204_067&rfr_iscdi=true |