Loading…
Mechanical and Microstructural Assessment of Inhomogeneities in Oxide Ceramic Matrix Composites Detected by Air-Coupled Ultrasound Inspection
Ceramic Matrix Composites (CMC) are promising materials for high-temperature applications where damage tolerant failure behavior is required. Non-destructive testing is essential for process development, monitoring, and quality assessment of CMC parts. Air-coupled ultrasound (ACU) is a fast and cost...
Saved in:
Published in: | Journal of composites science 2021-11, Vol.5 (11), p.286 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ceramic Matrix Composites (CMC) are promising materials for high-temperature applications where damage tolerant failure behavior is required. Non-destructive testing is essential for process development, monitoring, and quality assessment of CMC parts. Air-coupled ultrasound (ACU) is a fast and cost-efficient tool for non-destructive inspections of large components with respect to the detection of material inhomogeneities. Even though ACU inspection is usually used for visual inspection, the interpretation of C-scan images is often ambiguous with regard to critical defects and their impact on local material properties. This paper reports on a new approach to link the local acoustic damping of an oxide CMC plate obtained from ACU analysis with subsequent destructive mechanical testing and microstructural analyses. Local damping values of bending bars are extracted from ACU maps and compared with the results of subsequent resonant frequency damping analysis and 3-point bending tests. To support data interpretation, the homogeneous and inhomogeneous CMC areas detected in the ACU map are further analyzed by X-ray computed tomography and scanning electron microscopy. The results provide strong evidence that specific material properties such as Young’s modulus are not predictable from ACU damping maps. However, ACU shows a high, beneficial sensitivity for narrow but large area matrix cracks or delaminations, i.e., local damping is significantly correlated with specific properties such as shear moduli and bending strengths. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs5110286 |