Loading…

Early Detection of Coffee Leaf Rust Caused by Hemileia vastatrix Using Multispectral Images

Conventional methodology in the field for the sampling of coffee leaf rust, caused by Hemileia vastatrix, has proven to be impractical. This paper proposes a method for the early detection of this disease, which is the most significant pathogen of coffee plants worldwide, using multispectral images...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2022-12, Vol.12 (12), p.2911
Main Authors: Soares, Analis da Silva, Vieira, Bruno Sérgio, Bezerra, Thalita Almeida, Martins, George Deroco, Siquieroli, Ana Carolina Silva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conventional methodology in the field for the sampling of coffee leaf rust, caused by Hemileia vastatrix, has proven to be impractical. This paper proposes a method for the early detection of this disease, which is the most significant pathogen of coffee plants worldwide, using multispectral images acquired using a Mapir Survey3W camera and an unmanned aerial vehicle (UAV). For this purpose, 160 coffee seedlings of the coffee cultivar ‘Mundo Novo’ were inoculated with urediniospores of H. vastatrix and compared with 160 control (non-inoculated) seedlings to determine the most favorable interval for distinguishing healthy and infected plants. The 320 seedlings were placed on a dark surface to perform the imaging flights. In vitro analyses of the physiological parameters of 20 specimens were then performed for each condition (inoculated/non-inoculated) to obtain the hyperspectral curves, and this process was repeated three times at 15, 30, and 45 days after inoculation (DAI). Based on the simulated hyperspectral curves, a discrepancy between the red and near-infrared (NIR) bands was identified at 15 DAI, with the inoculated plants showing greater absorption in the red band and a greater spectral response in the NIR band. Thus, multispectral images were able to distinguish H. vastatrix infection in coffee seedlings at an asymptomatic stage (15 DAI) using a support vector machines (SVM) algorithm. Detection accuracy was 80% and the Kappa index of agreement was moderate (0.6). The early detection of this pathogen in the field using low-cost technology can be an important tool for the monitoring of coffee leaf rust and, consequently, a more sustainable management of the pathogen, causing farmers to make applications of chemical fungicides only when necessary.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy12122911