Loading…

Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network

Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV) missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of robotics 2013-01, Vol.2013 (2013), p.1-15
Main Authors: Deng, Yueyue, Beaujean, Pierre-Philippe J., An, Edgar, Carlson, Edward
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63
cites cdi_FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63
container_end_page 15
container_issue 2013
container_start_page 1
container_title Journal of robotics
container_volume 2013
creator Deng, Yueyue
Beaujean, Pierre-Philippe J.
An, Edgar
Carlson, Edward
description Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV) missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF) algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP) mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.
doi_str_mv 10.1155/2013/483095
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_48b7d418aa9547f2b5ee2c6be4f68d82</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_48b7d418aa9547f2b5ee2c6be4f68d82</doaj_id><sourcerecordid>1439730457</sourcerecordid><originalsourceid>FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63</originalsourceid><addsrcrecordid>eNqF0s1rFDEUAPBBFCy1J89CwIsoa5PJ1-S4LFULxfbQeg2Z5GV3trPJmmRcPPuPm3VkES_NJSH83iPv5TXNa4I_EsL5ZYsJvWQdxYo_a86I6ORCCaKen84Yv2wuct7iuqhqFZFnza97kx_RchyjNWWIAZng0J0pG3Q3mhCGsEY-JrSK42j6mKr5AWg5lRjiLk4ZPQQH6WAKJPQNNoMdIaPbPRxhDS2bFKf1pib9Fy5tjSyDRV-hHGJ6fNW88GbMcPF3P28ePl3dr74sbm4_X6-WNwsjOC8LLxltifVCYuu4UD3uLAhMmFfS0l5hxyT03PeipYZYJmxtiMGWyV5Q5wQ9b67nvC6ard6nYWfSTx3NoP9cxLTWJpVjDZp1vXSMdMYozqRvew7QWtED86JzXVtzvZtz7VP8PkEuejdkC7VLAWp1mghJeG1xq56mjCpJMeOy0rf_0W2cUqhNqar-b32LYlV9mJVNMecE_lQLwfo4Cvo4Cnoeharfz3ozBGcOwxP4zYyhEvDmhJnkRCj6GwYDvMg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420154794</pqid></control><display><type>article</type><title>Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Deng, Yueyue ; Beaujean, Pierre-Philippe J. ; An, Edgar ; Carlson, Edward</creator><contributor>Katić, Duško</contributor><creatorcontrib>Deng, Yueyue ; Beaujean, Pierre-Philippe J. ; An, Edgar ; Carlson, Edward ; Katić, Duško</creatorcontrib><description>Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV) missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF) algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP) mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.</description><identifier>ISSN: 1687-9600</identifier><identifier>EISSN: 1687-9619</identifier><identifier>DOI: 10.1155/2013/483095</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Allocations ; Autonomous underwater vehicles ; Computer simulation ; Networks ; Path planning ; Robots ; Studies ; Tasks ; Underwater acoustics ; Vehicles</subject><ispartof>Journal of robotics, 2013-01, Vol.2013 (2013), p.1-15</ispartof><rights>Copyright © 2013 Yueyue Deng et al.</rights><rights>Copyright © 2013 Yueyue Deng et al. Yueyue Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63</citedby><cites>FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1420154794/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1420154794?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,37011,44588,74896</link.rule.ids></links><search><contributor>Katić, Duško</contributor><creatorcontrib>Deng, Yueyue</creatorcontrib><creatorcontrib>Beaujean, Pierre-Philippe J.</creatorcontrib><creatorcontrib>An, Edgar</creatorcontrib><creatorcontrib>Carlson, Edward</creatorcontrib><title>Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network</title><title>Journal of robotics</title><description>Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV) missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF) algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP) mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Autonomous underwater vehicles</subject><subject>Computer simulation</subject><subject>Networks</subject><subject>Path planning</subject><subject>Robots</subject><subject>Studies</subject><subject>Tasks</subject><subject>Underwater acoustics</subject><subject>Vehicles</subject><issn>1687-9600</issn><issn>1687-9619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0s1rFDEUAPBBFCy1J89CwIsoa5PJ1-S4LFULxfbQeg2Z5GV3trPJmmRcPPuPm3VkES_NJSH83iPv5TXNa4I_EsL5ZYsJvWQdxYo_a86I6ORCCaKen84Yv2wuct7iuqhqFZFnza97kx_RchyjNWWIAZng0J0pG3Q3mhCGsEY-JrSK42j6mKr5AWg5lRjiLk4ZPQQH6WAKJPQNNoMdIaPbPRxhDS2bFKf1pib9Fy5tjSyDRV-hHGJ6fNW88GbMcPF3P28ePl3dr74sbm4_X6-WNwsjOC8LLxltifVCYuu4UD3uLAhMmFfS0l5hxyT03PeipYZYJmxtiMGWyV5Q5wQ9b67nvC6ard6nYWfSTx3NoP9cxLTWJpVjDZp1vXSMdMYozqRvew7QWtED86JzXVtzvZtz7VP8PkEuejdkC7VLAWp1mghJeG1xq56mjCpJMeOy0rf_0W2cUqhNqar-b32LYlV9mJVNMecE_lQLwfo4Cvo4Cnoeharfz3ozBGcOwxP4zYyhEvDmhJnkRCj6GwYDvMg</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Deng, Yueyue</creator><creator>Beaujean, Pierre-Philippe J.</creator><creator>An, Edgar</creator><creator>Carlson, Edward</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network</title><author>Deng, Yueyue ; Beaujean, Pierre-Philippe J. ; An, Edgar ; Carlson, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Autonomous underwater vehicles</topic><topic>Computer simulation</topic><topic>Networks</topic><topic>Path planning</topic><topic>Robots</topic><topic>Studies</topic><topic>Tasks</topic><topic>Underwater acoustics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yueyue</creatorcontrib><creatorcontrib>Beaujean, Pierre-Philippe J.</creatorcontrib><creatorcontrib>An, Edgar</creatorcontrib><creatorcontrib>Carlson, Edward</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yueyue</au><au>Beaujean, Pierre-Philippe J.</au><au>An, Edgar</au><au>Carlson, Edward</au><au>Katić, Duško</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network</atitle><jtitle>Journal of robotics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-9600</issn><eissn>1687-9619</eissn><abstract>Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV) missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF) algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP) mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2013/483095</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9600
ispartof Journal of robotics, 2013-01, Vol.2013 (2013), p.1-15
issn 1687-9600
1687-9619
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_48b7d418aa9547f2b5ee2c6be4f68d82
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest)
subjects Algorithms
Allocations
Autonomous underwater vehicles
Computer simulation
Networks
Path planning
Robots
Studies
Tasks
Underwater acoustics
Vehicles
title Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Allocation%20and%20Path%20Planning%20for%20Collaborative%20Autonomous%20Underwater%20Vehicles%20Operating%20through%20an%20Underwater%20Acoustic%20Network&rft.jtitle=Journal%20of%20robotics&rft.au=Deng,%20Yueyue&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-9600&rft.eissn=1687-9619&rft_id=info:doi/10.1155/2013/483095&rft_dat=%3Cproquest_doaj_%3E1439730457%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1420154794&rft_id=info:pmid/&rfr_iscdi=true