Loading…
Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network
Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV) missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for th...
Saved in:
Published in: | Journal of robotics 2013-01, Vol.2013 (2013), p.1-15 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63 |
---|---|
cites | cdi_FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63 |
container_end_page | 15 |
container_issue | 2013 |
container_start_page | 1 |
container_title | Journal of robotics |
container_volume | 2013 |
creator | Deng, Yueyue Beaujean, Pierre-Philippe J. An, Edgar Carlson, Edward |
description | Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV) missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF) algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP) mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available. |
doi_str_mv | 10.1155/2013/483095 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_48b7d418aa9547f2b5ee2c6be4f68d82</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_48b7d418aa9547f2b5ee2c6be4f68d82</doaj_id><sourcerecordid>1439730457</sourcerecordid><originalsourceid>FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63</originalsourceid><addsrcrecordid>eNqF0s1rFDEUAPBBFCy1J89CwIsoa5PJ1-S4LFULxfbQeg2Z5GV3trPJmmRcPPuPm3VkES_NJSH83iPv5TXNa4I_EsL5ZYsJvWQdxYo_a86I6ORCCaKen84Yv2wuct7iuqhqFZFnza97kx_RchyjNWWIAZng0J0pG3Q3mhCGsEY-JrSK42j6mKr5AWg5lRjiLk4ZPQQH6WAKJPQNNoMdIaPbPRxhDS2bFKf1pib9Fy5tjSyDRV-hHGJ6fNW88GbMcPF3P28ePl3dr74sbm4_X6-WNwsjOC8LLxltifVCYuu4UD3uLAhMmFfS0l5hxyT03PeipYZYJmxtiMGWyV5Q5wQ9b67nvC6ard6nYWfSTx3NoP9cxLTWJpVjDZp1vXSMdMYozqRvew7QWtED86JzXVtzvZtz7VP8PkEuejdkC7VLAWp1mghJeG1xq56mjCpJMeOy0rf_0W2cUqhNqar-b32LYlV9mJVNMecE_lQLwfo4Cvo4Cnoeharfz3ozBGcOwxP4zYyhEvDmhJnkRCj6GwYDvMg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420154794</pqid></control><display><type>article</type><title>Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Deng, Yueyue ; Beaujean, Pierre-Philippe J. ; An, Edgar ; Carlson, Edward</creator><contributor>Katić, Duško</contributor><creatorcontrib>Deng, Yueyue ; Beaujean, Pierre-Philippe J. ; An, Edgar ; Carlson, Edward ; Katić, Duško</creatorcontrib><description>Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV) missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF) algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP) mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.</description><identifier>ISSN: 1687-9600</identifier><identifier>EISSN: 1687-9619</identifier><identifier>DOI: 10.1155/2013/483095</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Allocations ; Autonomous underwater vehicles ; Computer simulation ; Networks ; Path planning ; Robots ; Studies ; Tasks ; Underwater acoustics ; Vehicles</subject><ispartof>Journal of robotics, 2013-01, Vol.2013 (2013), p.1-15</ispartof><rights>Copyright © 2013 Yueyue Deng et al.</rights><rights>Copyright © 2013 Yueyue Deng et al. Yueyue Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63</citedby><cites>FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1420154794/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1420154794?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,37011,44588,74896</link.rule.ids></links><search><contributor>Katić, Duško</contributor><creatorcontrib>Deng, Yueyue</creatorcontrib><creatorcontrib>Beaujean, Pierre-Philippe J.</creatorcontrib><creatorcontrib>An, Edgar</creatorcontrib><creatorcontrib>Carlson, Edward</creatorcontrib><title>Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network</title><title>Journal of robotics</title><description>Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV) missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF) algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP) mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.</description><subject>Algorithms</subject><subject>Allocations</subject><subject>Autonomous underwater vehicles</subject><subject>Computer simulation</subject><subject>Networks</subject><subject>Path planning</subject><subject>Robots</subject><subject>Studies</subject><subject>Tasks</subject><subject>Underwater acoustics</subject><subject>Vehicles</subject><issn>1687-9600</issn><issn>1687-9619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0s1rFDEUAPBBFCy1J89CwIsoa5PJ1-S4LFULxfbQeg2Z5GV3trPJmmRcPPuPm3VkES_NJSH83iPv5TXNa4I_EsL5ZYsJvWQdxYo_a86I6ORCCaKen84Yv2wuct7iuqhqFZFnza97kx_RchyjNWWIAZng0J0pG3Q3mhCGsEY-JrSK42j6mKr5AWg5lRjiLk4ZPQQH6WAKJPQNNoMdIaPbPRxhDS2bFKf1pib9Fy5tjSyDRV-hHGJ6fNW88GbMcPF3P28ePl3dr74sbm4_X6-WNwsjOC8LLxltifVCYuu4UD3uLAhMmFfS0l5hxyT03PeipYZYJmxtiMGWyV5Q5wQ9b67nvC6ard6nYWfSTx3NoP9cxLTWJpVjDZp1vXSMdMYozqRvew7QWtED86JzXVtzvZtz7VP8PkEuejdkC7VLAWp1mghJeG1xq56mjCpJMeOy0rf_0W2cUqhNqar-b32LYlV9mJVNMecE_lQLwfo4Cvo4Cnoeharfz3ozBGcOwxP4zYyhEvDmhJnkRCj6GwYDvMg</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Deng, Yueyue</creator><creator>Beaujean, Pierre-Philippe J.</creator><creator>An, Edgar</creator><creator>Carlson, Edward</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network</title><author>Deng, Yueyue ; Beaujean, Pierre-Philippe J. ; An, Edgar ; Carlson, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Allocations</topic><topic>Autonomous underwater vehicles</topic><topic>Computer simulation</topic><topic>Networks</topic><topic>Path planning</topic><topic>Robots</topic><topic>Studies</topic><topic>Tasks</topic><topic>Underwater acoustics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yueyue</creatorcontrib><creatorcontrib>Beaujean, Pierre-Philippe J.</creatorcontrib><creatorcontrib>An, Edgar</creatorcontrib><creatorcontrib>Carlson, Edward</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yueyue</au><au>Beaujean, Pierre-Philippe J.</au><au>An, Edgar</au><au>Carlson, Edward</au><au>Katić, Duško</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network</atitle><jtitle>Journal of robotics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-9600</issn><eissn>1687-9619</eissn><abstract>Dynamic and unstructured multiple cooperative autonomous underwater vehicle (AUV) missions are highly complex operations, and task allocation and path planning are made significantly more challenging under realistic underwater acoustic communication constraints. This paper presents a solution for the task allocation and path planning for multiple AUVs under marginal acoustic communication conditions: a location-aided task allocation framework (LAAF) algorithm for multitarget task assignment and the grid-based multiobjective optimal programming (GMOOP) mathematical model for finding an optimal vehicle command decision given a set of objectives and constraints. Both the LAAF and GMOOP algorithms are well suited in poor acoustic network condition and dynamic environment. Our research is based on an existing mobile ad hoc network underwater acoustic simulator and blind flooding routing protocol. Simulation results demonstrate that the location-aided auction strategy performs significantly better than the well-accepted auction algorithm developed by Bertsekas in terms of task-allocation time and network bandwidth consumption. We also demonstrate that the GMOOP path-planning technique provides an efficient method for executing multiobjective tasks by cooperative agents with limited communication capabilities. This is in contrast to existing multiobjective action selection methods that are limited to networks where constant, reliable communication is assumed to be available.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2013/483095</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9600 |
ispartof | Journal of robotics, 2013-01, Vol.2013 (2013), p.1-15 |
issn | 1687-9600 1687-9619 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_48b7d418aa9547f2b5ee2c6be4f68d82 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest) |
subjects | Algorithms Allocations Autonomous underwater vehicles Computer simulation Networks Path planning Robots Studies Tasks Underwater acoustics Vehicles |
title | Task Allocation and Path Planning for Collaborative Autonomous Underwater Vehicles Operating through an Underwater Acoustic Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task%20Allocation%20and%20Path%20Planning%20for%20Collaborative%20Autonomous%20Underwater%20Vehicles%20Operating%20through%20an%20Underwater%20Acoustic%20Network&rft.jtitle=Journal%20of%20robotics&rft.au=Deng,%20Yueyue&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-9600&rft.eissn=1687-9619&rft_id=info:doi/10.1155/2013/483095&rft_dat=%3Cproquest_doaj_%3E1439730457%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a655t-f74321cf670cd569b08ce6014f97c3b90d47eb5fb623a1c46c013a0c47b63dd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1420154794&rft_id=info:pmid/&rfr_iscdi=true |