Loading…
Ultrasound-based radiomics technology in fetal lung texture analysis prediction of neonatal respiratory morbidity
To develop a novel method for predicting neonatal respiratory morbidity (NRM) by ultrasound-based radiomics technology. In this retrospective study, 430 high-throughput features per fetal-lung image were extracted from 295 fetal lung ultrasound images (four-chamber view) in 295 single pregnancies. I...
Saved in:
Published in: | Scientific reports 2022-07, Vol.12 (1), p.12747-12747, Article 12747 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To develop a novel method for predicting neonatal respiratory morbidity (NRM) by ultrasound-based radiomics technology. In this retrospective study, 430 high-throughput features per fetal-lung image were extracted from 295 fetal lung ultrasound images (four-chamber view) in 295 single pregnancies. Images had been obtained between 28
+3
and 37
+6
weeks of gestation within 72 h before delivery. A machine-learning model built by RUSBoost (Random under-sampling with AdaBoost) architecture was created using 20 radiomics features extracted from the images and 2 clinical features (gestational age and pregnancy complications) to predict the possibility of NRM. Of the 295 standard fetal lung ultrasound images included, 210 in the training set and 85 in the testing set. The overall performance of the neonatal respiratory morbidity prediction model achieved AUC of 0.88 (95% CI 0.83–0.92) in the training set and 0.83 (95% CI 0.79–0.97) in the testing set, sensitivity of 84.31% (95% CI 79.06–89.44%) in the training set and 77.78% (95% CI 68.30–87.43%) in the testing set, specificity of 81.13% (95% CI 78.16–84.07%) in the training set and 82.09% (95% CI 77.65–86.62%) in the testing set, and accuracy of 81.90% (95% CI 79.34–84.41%) in the training set and 81.18% (95% CI 77.33–85.12%) in the testing set. Ultrasound-based radiomics technology can be used to predict NRM. The results of this study may provide a novel method for non-invasive approaches for the prenatal prediction of NRM. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-17129-8 |