Loading…

Deep cryogenic treatment of AA7050: tensile response and corrosion susceptibility

Cryogenic treatments represent an innovative technology developed with the aim of improving the performance of metallic alloys. The beneficial effects on steels are well documented in the literature, whereas their influence on other materials, such as aluminum alloys, is still not completely clarifi...

Full description

Saved in:
Bibliographic Details
Published in:Discover materials 2023-02, Vol.3 (1), p.2-11, Article 2
Main Authors: Gerosa, R., Panzeri, D., Rivolta, B., Casaroli, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cryogenic treatments represent an innovative technology developed with the aim of improving the performance of metallic alloys. The beneficial effects on steels are well documented in the literature, whereas their influence on other materials, such as aluminum alloys, is still not completely clarified. Even if the scientific literature reports conflicting data and conclusions, the industrial applications of such treatments are constantly growing. In the present experimental work, the mechanical and corrosion properties of a high-performance 7050 aluminum alloy plate were studied after cryogenic treatment at − 196 °C in liquid nitrogen. Tensile tests were performed on heat-treated samples, and intergranular corrosion tests were carried out on prismatic samples, according to ASTM G110-92 standard. The specimens were exposed to the corrosive environment and the effect of intergranular corrosion was measured by quantitative analysis using light-optical microscopy (LOM). Whereas trifling variation was observed in the mechanical resistance and plastic behavior, the corrosion tests showed a benefic effect of the cryogenic treatment. The microstructure was investigated by FEG-SEM analysis, revealing a different distribution of precipitates near the grain boundaries, which was able to reduce the electrochemical potential difference among these regions and the center-grain.
ISSN:2730-7727
2730-7727
DOI:10.1007/s43939-023-00037-7