Loading…
Formation of Fuzzy Patterns in Logical Analysis of Data Using a Multi-Criteria Genetic Algorithm
The formation of patterns is one of the main stages in logical data analysis. Fuzzy approaches to pattern generation in logical analysis of data allow the pattern to cover not only objects of the target class, but also a certain proportion of objects of the opposite class. In this case, pattern sear...
Saved in:
Published in: | Symmetry (Basel) 2022-03, Vol.14 (3), p.600 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-698e6e400c649d6668dba2c70189c1285f0a579dbbe3ffff3812609c4ff3da713 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-698e6e400c649d6668dba2c70189c1285f0a579dbbe3ffff3812609c4ff3da713 |
container_end_page | |
container_issue | 3 |
container_start_page | 600 |
container_title | Symmetry (Basel) |
container_volume | 14 |
creator | Masich, Igor S. Kulachenko, Margarita A. Stanimirović, Predrag S. Popov, Aleksey M. Tovbis, Elena M. Stupina, Alena A. Kazakovtsev, Lev A. |
description | The formation of patterns is one of the main stages in logical data analysis. Fuzzy approaches to pattern generation in logical analysis of data allow the pattern to cover not only objects of the target class, but also a certain proportion of objects of the opposite class. In this case, pattern search is an optimization problem with the maximum coverage of the target class as an objective function, and some allowed coverage of the opposite class as a constraint. We propose a more flexible and symmetric optimization model which does not impose a strict restriction on the pattern coverage of the opposite class observations. Instead, our model converts such a restriction (purity restriction) into an additional criterion. Both, coverage of the target class and the opposite class are two objective functions of the optimization problem. The search for a balance of these criteria is the essence of the proposed optimization method. We propose a modified evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to solve this problem. The new algorithm uses pattern formation as an approximation of the Pareto set and considers the solution’s representation in logical analysis of data and the informativeness of patterns. We have tested our approach on two applied medical problems of classification under conditions of sample asymmetry: one class significantly dominated the other. The classification results were comparable and, in some cases, better than the results of commonly used machine learning algorithms in terms of accuracy, without losing the interpretability. |
doi_str_mv | 10.3390/sym14030600 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_48df8ac27d7644c48dc5043bfae6ba3b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_48df8ac27d7644c48dc5043bfae6ba3b</doaj_id><sourcerecordid>2642465327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-698e6e400c649d6668dba2c70189c1285f0a579dbbe3ffff3812609c4ff3da713</originalsourceid><addsrcrecordid>eNpNUcFOwzAMrRBITGMnfiASR1RwmzRtj9NgY9IQHNg5uGlaMrXNSNpD9_VkDKH5Yvvp-dnyC4LbCB4ozeHRjW3EgAIHuAgmMaQ0zPKcXZ7V18HMuR34SCBhHCbB59LYFnttOmIqshwOh5G8Y98r2zmiO7IxtZbYkHmHzei0O7KesEeydbqrCZLXoel1uLDaj2gkK9WpXksyb2rjsa_2JriqsHFq9penwXb5_LF4CTdvq_Vivgkl5awPeZ4prhiA5CwvOedZWWAsU4iyXEZxllSASZqXRaFo5YNmUcwhl8yXJaYRnQbrk25pcCf2VrdoR2FQi1_A2Fqg9Zc1SrCsrDKUcVqmnDHpW5kAo0WFihdIC691d9LaW_M9KNeLnRms_4ATMWcx4wmNU8-6P7GkNc5ZVf1vjUAcHRFnjtAfn-99zg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642465327</pqid></control><display><type>article</type><title>Formation of Fuzzy Patterns in Logical Analysis of Data Using a Multi-Criteria Genetic Algorithm</title><source>Publicly Available Content Database</source><creator>Masich, Igor S. ; Kulachenko, Margarita A. ; Stanimirović, Predrag S. ; Popov, Aleksey M. ; Tovbis, Elena M. ; Stupina, Alena A. ; Kazakovtsev, Lev A.</creator><creatorcontrib>Masich, Igor S. ; Kulachenko, Margarita A. ; Stanimirović, Predrag S. ; Popov, Aleksey M. ; Tovbis, Elena M. ; Stupina, Alena A. ; Kazakovtsev, Lev A.</creatorcontrib><description>The formation of patterns is one of the main stages in logical data analysis. Fuzzy approaches to pattern generation in logical analysis of data allow the pattern to cover not only objects of the target class, but also a certain proportion of objects of the opposite class. In this case, pattern search is an optimization problem with the maximum coverage of the target class as an objective function, and some allowed coverage of the opposite class as a constraint. We propose a more flexible and symmetric optimization model which does not impose a strict restriction on the pattern coverage of the opposite class observations. Instead, our model converts such a restriction (purity restriction) into an additional criterion. Both, coverage of the target class and the opposite class are two objective functions of the optimization problem. The search for a balance of these criteria is the essence of the proposed optimization method. We propose a modified evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to solve this problem. The new algorithm uses pattern formation as an approximation of the Pareto set and considers the solution’s representation in logical analysis of data and the informativeness of patterns. We have tested our approach on two applied medical problems of classification under conditions of sample asymmetry: one class significantly dominated the other. The classification results were comparable and, in some cases, better than the results of commonly used machine learning algorithms in terms of accuracy, without losing the interpretability.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym14030600</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boolean ; Classification ; Data analysis ; Decision trees ; Evolutionary algorithms ; Fuzzy logic ; genetic algorithm ; Genetic algorithms ; Integer programming ; Linear programming ; logical analysis of data ; Machine learning ; Multiple criterion ; Optimization ; Optimization models ; Pattern analysis ; Pattern generation ; Pattern search ; Sorting algorithms</subject><ispartof>Symmetry (Basel), 2022-03, Vol.14 (3), p.600</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-698e6e400c649d6668dba2c70189c1285f0a579dbbe3ffff3812609c4ff3da713</citedby><cites>FETCH-LOGICAL-c364t-698e6e400c649d6668dba2c70189c1285f0a579dbbe3ffff3812609c4ff3da713</cites><orcidid>0000-0002-8500-2050 ; 0000-0002-5564-9267 ; 0000-0002-0667-4001 ; 0000-0003-0655-3741 ; 0000-0002-3997-342X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642465327/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642465327?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Masich, Igor S.</creatorcontrib><creatorcontrib>Kulachenko, Margarita A.</creatorcontrib><creatorcontrib>Stanimirović, Predrag S.</creatorcontrib><creatorcontrib>Popov, Aleksey M.</creatorcontrib><creatorcontrib>Tovbis, Elena M.</creatorcontrib><creatorcontrib>Stupina, Alena A.</creatorcontrib><creatorcontrib>Kazakovtsev, Lev A.</creatorcontrib><title>Formation of Fuzzy Patterns in Logical Analysis of Data Using a Multi-Criteria Genetic Algorithm</title><title>Symmetry (Basel)</title><description>The formation of patterns is one of the main stages in logical data analysis. Fuzzy approaches to pattern generation in logical analysis of data allow the pattern to cover not only objects of the target class, but also a certain proportion of objects of the opposite class. In this case, pattern search is an optimization problem with the maximum coverage of the target class as an objective function, and some allowed coverage of the opposite class as a constraint. We propose a more flexible and symmetric optimization model which does not impose a strict restriction on the pattern coverage of the opposite class observations. Instead, our model converts such a restriction (purity restriction) into an additional criterion. Both, coverage of the target class and the opposite class are two objective functions of the optimization problem. The search for a balance of these criteria is the essence of the proposed optimization method. We propose a modified evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to solve this problem. The new algorithm uses pattern formation as an approximation of the Pareto set and considers the solution’s representation in logical analysis of data and the informativeness of patterns. We have tested our approach on two applied medical problems of classification under conditions of sample asymmetry: one class significantly dominated the other. The classification results were comparable and, in some cases, better than the results of commonly used machine learning algorithms in terms of accuracy, without losing the interpretability.</description><subject>Boolean</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Decision trees</subject><subject>Evolutionary algorithms</subject><subject>Fuzzy logic</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>logical analysis of data</subject><subject>Machine learning</subject><subject>Multiple criterion</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Pattern analysis</subject><subject>Pattern generation</subject><subject>Pattern search</subject><subject>Sorting algorithms</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOwzAMrRBITGMnfiASR1RwmzRtj9NgY9IQHNg5uGlaMrXNSNpD9_VkDKH5Yvvp-dnyC4LbCB4ozeHRjW3EgAIHuAgmMaQ0zPKcXZ7V18HMuR34SCBhHCbB59LYFnttOmIqshwOh5G8Y98r2zmiO7IxtZbYkHmHzei0O7KesEeydbqrCZLXoel1uLDaj2gkK9WpXksyb2rjsa_2JriqsHFq9penwXb5_LF4CTdvq_Vivgkl5awPeZ4prhiA5CwvOedZWWAsU4iyXEZxllSASZqXRaFo5YNmUcwhl8yXJaYRnQbrk25pcCf2VrdoR2FQi1_A2Fqg9Zc1SrCsrDKUcVqmnDHpW5kAo0WFihdIC691d9LaW_M9KNeLnRms_4ATMWcx4wmNU8-6P7GkNc5ZVf1vjUAcHRFnjtAfn-99zg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Masich, Igor S.</creator><creator>Kulachenko, Margarita A.</creator><creator>Stanimirović, Predrag S.</creator><creator>Popov, Aleksey M.</creator><creator>Tovbis, Elena M.</creator><creator>Stupina, Alena A.</creator><creator>Kazakovtsev, Lev A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8500-2050</orcidid><orcidid>https://orcid.org/0000-0002-5564-9267</orcidid><orcidid>https://orcid.org/0000-0002-0667-4001</orcidid><orcidid>https://orcid.org/0000-0003-0655-3741</orcidid><orcidid>https://orcid.org/0000-0002-3997-342X</orcidid></search><sort><creationdate>20220301</creationdate><title>Formation of Fuzzy Patterns in Logical Analysis of Data Using a Multi-Criteria Genetic Algorithm</title><author>Masich, Igor S. ; Kulachenko, Margarita A. ; Stanimirović, Predrag S. ; Popov, Aleksey M. ; Tovbis, Elena M. ; Stupina, Alena A. ; Kazakovtsev, Lev A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-698e6e400c649d6668dba2c70189c1285f0a579dbbe3ffff3812609c4ff3da713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boolean</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Decision trees</topic><topic>Evolutionary algorithms</topic><topic>Fuzzy logic</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>logical analysis of data</topic><topic>Machine learning</topic><topic>Multiple criterion</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Pattern analysis</topic><topic>Pattern generation</topic><topic>Pattern search</topic><topic>Sorting algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masich, Igor S.</creatorcontrib><creatorcontrib>Kulachenko, Margarita A.</creatorcontrib><creatorcontrib>Stanimirović, Predrag S.</creatorcontrib><creatorcontrib>Popov, Aleksey M.</creatorcontrib><creatorcontrib>Tovbis, Elena M.</creatorcontrib><creatorcontrib>Stupina, Alena A.</creatorcontrib><creatorcontrib>Kazakovtsev, Lev A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masich, Igor S.</au><au>Kulachenko, Margarita A.</au><au>Stanimirović, Predrag S.</au><au>Popov, Aleksey M.</au><au>Tovbis, Elena M.</au><au>Stupina, Alena A.</au><au>Kazakovtsev, Lev A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of Fuzzy Patterns in Logical Analysis of Data Using a Multi-Criteria Genetic Algorithm</atitle><jtitle>Symmetry (Basel)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>600</spage><pages>600-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>The formation of patterns is one of the main stages in logical data analysis. Fuzzy approaches to pattern generation in logical analysis of data allow the pattern to cover not only objects of the target class, but also a certain proportion of objects of the opposite class. In this case, pattern search is an optimization problem with the maximum coverage of the target class as an objective function, and some allowed coverage of the opposite class as a constraint. We propose a more flexible and symmetric optimization model which does not impose a strict restriction on the pattern coverage of the opposite class observations. Instead, our model converts such a restriction (purity restriction) into an additional criterion. Both, coverage of the target class and the opposite class are two objective functions of the optimization problem. The search for a balance of these criteria is the essence of the proposed optimization method. We propose a modified evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to solve this problem. The new algorithm uses pattern formation as an approximation of the Pareto set and considers the solution’s representation in logical analysis of data and the informativeness of patterns. We have tested our approach on two applied medical problems of classification under conditions of sample asymmetry: one class significantly dominated the other. The classification results were comparable and, in some cases, better than the results of commonly used machine learning algorithms in terms of accuracy, without losing the interpretability.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym14030600</doi><orcidid>https://orcid.org/0000-0002-8500-2050</orcidid><orcidid>https://orcid.org/0000-0002-5564-9267</orcidid><orcidid>https://orcid.org/0000-0002-0667-4001</orcidid><orcidid>https://orcid.org/0000-0003-0655-3741</orcidid><orcidid>https://orcid.org/0000-0002-3997-342X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2022-03, Vol.14 (3), p.600 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_48df8ac27d7644c48dc5043bfae6ba3b |
source | Publicly Available Content Database |
subjects | Boolean Classification Data analysis Decision trees Evolutionary algorithms Fuzzy logic genetic algorithm Genetic algorithms Integer programming Linear programming logical analysis of data Machine learning Multiple criterion Optimization Optimization models Pattern analysis Pattern generation Pattern search Sorting algorithms |
title | Formation of Fuzzy Patterns in Logical Analysis of Data Using a Multi-Criteria Genetic Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20Fuzzy%20Patterns%20in%20Logical%20Analysis%20of%20Data%20Using%20a%20Multi-Criteria%20Genetic%20Algorithm&rft.jtitle=Symmetry%20(Basel)&rft.au=Masich,%20Igor%20S.&rft.date=2022-03-01&rft.volume=14&rft.issue=3&rft.spage=600&rft.pages=600-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym14030600&rft_dat=%3Cproquest_doaj_%3E2642465327%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-698e6e400c649d6668dba2c70189c1285f0a579dbbe3ffff3812609c4ff3da713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642465327&rft_id=info:pmid/&rfr_iscdi=true |