Loading…

Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes

Plant roots support complex microbial communities that can influence plant growth, nutrition, and health. While extensive characterizations of the composition and spatial compartmentalization of these communities have been performed in different plant species, there is relatively little known about...

Full description

Saved in:
Bibliographic Details
Published in:mBio 2017-07, Vol.8 (4)
Main Authors: Santos-MedellĂ­n, Christian, Edwards, Joseph, Liechty, Zachary, Nguyen, Bao, Sundaresan, Venkatesan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant roots support complex microbial communities that can influence plant growth, nutrition, and health. While extensive characterizations of the composition and spatial compartmentalization of these communities have been performed in different plant species, there is relatively little known about the impact of abiotic stresses on the root microbiota. Here, we have used rice as a model to explore the responses of root microbiomes to drought stress. Using four distinct genotypes, grown in soils from three different fields, we tracked the drought-induced changes in microbial composition in the rhizosphere (the soil immediately surrounding the root), the endosphere (the root interior), and unplanted soils. Drought significantly altered the overall bacterial and fungal compositions of all three communities, with the endosphere and rhizosphere compartments showing the greatest divergence from well-watered controls. The overall response of the bacterial microbiota to drought stress was taxonomically consistent across soils and cultivars and was primarily driven by an enrichment of multiple and , as well as a depletion of several and While there was some overlap in the changes observed in the rhizosphere and endosphere communities, several drought-responsive taxa were compartment specific, a pattern likely arising from preexisting compositional differences, as well as plant-mediated processes affecting individual compartments. These results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in restructuring of root microbial communities and suggest the possibility that constituents of the altered plant microbiota might contribute to plant survival under extreme environmental conditions. With the likelihood that changes in global climate will adversely affect crop yields, the potential role of microbial communities in enhancing plant performance makes it important to elucidate the responses of plant microbiomes to environmental variation. By detailed characterization of the effect of drought stress on the root-associated microbiota of the crop plant rice, we show that the rhizosphere and endosphere communities undergo major compositional changes that involve shifts in the relative abundances of a taxonomically diverse set of bacteria in response to drought. These drought-responsive microbes, in particular those enriched under water deficit conditions, could potentially benefit the plant as they could contri
ISSN:2161-2129
2150-7511
DOI:10.1128/mbio.00764-17