Loading…

Detection of SARS-CoV-2 RNA in selected agricultural and food retail environments in Tehran, Iran

The SARS-CoV-2 pandemic has and continues to impose a considerable public health burden. Although not likely foodborne, SARS-CoV-2 transmission has been well documented in agricultural and food retail environments in several countries, with transmission primarily thought to be worker-to-worker or th...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in public health 2022-09, Vol.10, p.823061
Main Authors: Rafieepoor, Maedeh, Mohebbi, Seyed Reza, Hosseini, Seyed Masoud, Tanhaei, Mohammad, Saeedi Niasar, Mahsa, Kazemian, Shabnam, Asadzadeh Aghdaei, Hamid, Moore, Matthew D, Zali, Mohammad Reza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The SARS-CoV-2 pandemic has and continues to impose a considerable public health burden. Although not likely foodborne, SARS-CoV-2 transmission has been well documented in agricultural and food retail environments in several countries, with transmission primarily thought to be worker-to-worker or through environmental high touch surfaces. However, the prevalence and degree to which SARS-CoV-2 contamination occurs in such settings in Iran has not been well documented. Furthermore, since SARS-CoV-2 has been observed to be shed in the feces of some infected individuals, wastewater has been utilized as a means of surveilling the occurrence of SARS-CoV-2 in some regions. This study aimed to investigate the presence of SARS-CoV-2 RNA along the food production and retail chain, from wastewater and irrigation water to vegetables in field and sold in retail. From September 2020 to January 2021, vegetables from different agricultural areas of Tehran province ( = 35), their irrigated agricultural water ( = 8), treated wastewater mixed into irrigated agricultural water ( = 8), and vegetables collected from markets in Tehran ( = 72) were tested for the presence of SARS-CoV-2 RNA. The vegetable samples were washed with TGBE buffer and concentrated with polyethylene glycol precipitation, while water samples were concentrated by an adsorption-elution method using an electronegative filter. RT-qPCR targeting the SARS-CoV-2 N and RdRp genes was then conducted. SARS-CoV-2 RNA was detected in 51/123 (41.5%) of the samples overall. The presence of SARS-CoV-2 RNA in treated wastewater, irrigation water, field vegetables, and market produce were 75, 37.5, 42.85, and 37.5%, respectively. These results indicate that SARS-CoV-2 RNA is present in food retail and may also suggest that produce can additionally be contaminated with SARS-CoV-2 RNA by agricultural water. This study demonstrates that SARS-CoV-2 RNA was detected in waste and irrigation water, as well as on produce both in field and at retail. However, more evidence is needed to understand if contaminated irrigation water causes SARS-CoV-2 RNA contamination of produce, and if there is a significant public health risk in consuming this produce.
ISSN:2296-2565
2296-2565
DOI:10.3389/fpubh.2022.823061