Loading…
Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System
In this article, a novel maximum power point tracking (MPPT) controller for a photovoltaic (PV) system is presented. The proposed MPPT controller was designed in order to extract the maximum of power from the PV-module and reduce the oscillations once the maximum power point (MPP) had been achieved....
Saved in:
Published in: | Energies (Basel) 2019-07, Vol.12 (14), p.2827 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503 |
container_end_page | |
container_issue | 14 |
container_start_page | 2827 |
container_title | Energies (Basel) |
container_volume | 12 |
creator | Bouarroudj, Noureddine Boukhetala, Djamel Feliu-Batlle, Vicente Boudjema, Fares Benlahbib, Boualam Batoun, Bachir |
description | In this article, a novel maximum power point tracking (MPPT) controller for a photovoltaic (PV) system is presented. The proposed MPPT controller was designed in order to extract the maximum of power from the PV-module and reduce the oscillations once the maximum power point (MPP) had been achieved. To reach this goal, a combination of fuzzy logic and an adaptive radial basis function neural network (RBF-NN) was used to drive a DC-DC Boost converter which was used to link the PV-module and a resistive load. First, a fuzzy logic system, whose single input was based on the incremental conductance (INC) method, was used for a variable voltage step size searching while reducing the oscillations around the MPP. Second, an RBF-NN controller was developed to keep the PV-module voltage at the optimal voltage generated from the first stage. To ensure a real MPPT in all cases (change of weather conditions and load variation) an adaptive law based on backpropagation algorithm with the gradient descent method was used to tune the weights of RBF-NN in order to minimize a mean-squared-error (MSE) criterion. Finally, through the simulation results, our proposed MPPT method outperforms the classical P and O and INC-adaptive RBF-NN in terms of efficiency. |
doi_str_mv | 10.3390/en12142827 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4947a54fca384c59aae542810254f8bb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4947a54fca384c59aae542810254f8bb</doaj_id><sourcerecordid>2403408856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503</originalsourceid><addsrcrecordid>eNp9kctOwzAQRSMEEqh0wxdEYocUsD1OYi9LxUviJV5ba-rYyKWNi50A5esxFAErvLDHd46urmaybIeSfQBJDkxLGeVMsHot26JSVgUlNaz_qTezYYxTkg4ABYCtzF7gm5v38_zav5qQbtd2-V1A_ZR-hxhNk_s2P-7f35f5qMFF515MfoONw9ln28XUa3XnEnRp-pDUS9O9-vCUW5_sHorbZezMfDvbsDiLZvj9DrL746O78WlxfnVyNh6dFxqE7AoQegKMSqgmlkhjWSkpIdYQAUwYpMQgqyxLjCANVJYiVDpBlWjqWpQEBtnZyrfxOFWL4OYYlsqjU1-CD48KQ-f0zCgueY0ltxpBcF1KRFOm4VHCkigmk-S1u_JaBP_cm9ipqe9Dm-IrxglwIkRZ_UsBrSTn8EXtrSgdfIzB2J9slKjP5anf5cEHC9iIzA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316944356</pqid></control><display><type>article</type><title>Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bouarroudj, Noureddine ; Boukhetala, Djamel ; Feliu-Batlle, Vicente ; Boudjema, Fares ; Benlahbib, Boualam ; Batoun, Bachir</creator><creatorcontrib>Bouarroudj, Noureddine ; Boukhetala, Djamel ; Feliu-Batlle, Vicente ; Boudjema, Fares ; Benlahbib, Boualam ; Batoun, Bachir</creatorcontrib><description>In this article, a novel maximum power point tracking (MPPT) controller for a photovoltaic (PV) system is presented. The proposed MPPT controller was designed in order to extract the maximum of power from the PV-module and reduce the oscillations once the maximum power point (MPP) had been achieved. To reach this goal, a combination of fuzzy logic and an adaptive radial basis function neural network (RBF-NN) was used to drive a DC-DC Boost converter which was used to link the PV-module and a resistive load. First, a fuzzy logic system, whose single input was based on the incremental conductance (INC) method, was used for a variable voltage step size searching while reducing the oscillations around the MPP. Second, an RBF-NN controller was developed to keep the PV-module voltage at the optimal voltage generated from the first stage. To ensure a real MPPT in all cases (change of weather conditions and load variation) an adaptive law based on backpropagation algorithm with the gradient descent method was used to tune the weights of RBF-NN in order to minimize a mean-squared-error (MSE) criterion. Finally, through the simulation results, our proposed MPPT method outperforms the classical P and O and INC-adaptive RBF-NN in terms of efficiency.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en12142827</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive algorithms ; adaptive RBF-NN ; Adaptive systems ; Algorithms ; Alternative energy sources ; Back propagation ; boost converter ; Composition ; Computer simulation ; Conductance ; Control systems design ; Controllers ; Converters ; Current sources ; Diodes ; Electric potential ; Flow charts ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Incremental conductance ; Irradiance ; Load fluctuation ; Mathematical models ; Maximum power ; Methods ; MPPT controller ; Neural networks ; Oscillations ; Photovoltaic cells ; Photovoltaics ; PV-module ; Radial basis function ; Real numbers ; Solar energy ; Variables ; Voltage ; Voltage converters (DC to DC) ; Weather</subject><ispartof>Energies (Basel), 2019-07, Vol.12 (14), p.2827</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503</citedby><cites>FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503</cites><orcidid>0000-0002-3578-7910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2316944356/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2316944356?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Bouarroudj, Noureddine</creatorcontrib><creatorcontrib>Boukhetala, Djamel</creatorcontrib><creatorcontrib>Feliu-Batlle, Vicente</creatorcontrib><creatorcontrib>Boudjema, Fares</creatorcontrib><creatorcontrib>Benlahbib, Boualam</creatorcontrib><creatorcontrib>Batoun, Bachir</creatorcontrib><title>Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System</title><title>Energies (Basel)</title><description>In this article, a novel maximum power point tracking (MPPT) controller for a photovoltaic (PV) system is presented. The proposed MPPT controller was designed in order to extract the maximum of power from the PV-module and reduce the oscillations once the maximum power point (MPP) had been achieved. To reach this goal, a combination of fuzzy logic and an adaptive radial basis function neural network (RBF-NN) was used to drive a DC-DC Boost converter which was used to link the PV-module and a resistive load. First, a fuzzy logic system, whose single input was based on the incremental conductance (INC) method, was used for a variable voltage step size searching while reducing the oscillations around the MPP. Second, an RBF-NN controller was developed to keep the PV-module voltage at the optimal voltage generated from the first stage. To ensure a real MPPT in all cases (change of weather conditions and load variation) an adaptive law based on backpropagation algorithm with the gradient descent method was used to tune the weights of RBF-NN in order to minimize a mean-squared-error (MSE) criterion. Finally, through the simulation results, our proposed MPPT method outperforms the classical P and O and INC-adaptive RBF-NN in terms of efficiency.</description><subject>Adaptive algorithms</subject><subject>adaptive RBF-NN</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Back propagation</subject><subject>boost converter</subject><subject>Composition</subject><subject>Computer simulation</subject><subject>Conductance</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Converters</subject><subject>Current sources</subject><subject>Diodes</subject><subject>Electric potential</subject><subject>Flow charts</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Incremental conductance</subject><subject>Irradiance</subject><subject>Load fluctuation</subject><subject>Mathematical models</subject><subject>Maximum power</subject><subject>Methods</subject><subject>MPPT controller</subject><subject>Neural networks</subject><subject>Oscillations</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>PV-module</subject><subject>Radial basis function</subject><subject>Real numbers</subject><subject>Solar energy</subject><subject>Variables</subject><subject>Voltage</subject><subject>Voltage converters (DC to DC)</subject><subject>Weather</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctOwzAQRSMEEqh0wxdEYocUsD1OYi9LxUviJV5ba-rYyKWNi50A5esxFAErvLDHd46urmaybIeSfQBJDkxLGeVMsHot26JSVgUlNaz_qTezYYxTkg4ABYCtzF7gm5v38_zav5qQbtd2-V1A_ZR-hxhNk_s2P-7f35f5qMFF515MfoONw9ln28XUa3XnEnRp-pDUS9O9-vCUW5_sHorbZezMfDvbsDiLZvj9DrL746O78WlxfnVyNh6dFxqE7AoQegKMSqgmlkhjWSkpIdYQAUwYpMQgqyxLjCANVJYiVDpBlWjqWpQEBtnZyrfxOFWL4OYYlsqjU1-CD48KQ-f0zCgueY0ltxpBcF1KRFOm4VHCkigmk-S1u_JaBP_cm9ipqe9Dm-IrxglwIkRZ_UsBrSTn8EXtrSgdfIzB2J9slKjP5anf5cEHC9iIzA</recordid><startdate>20190722</startdate><enddate>20190722</enddate><creator>Bouarroudj, Noureddine</creator><creator>Boukhetala, Djamel</creator><creator>Feliu-Batlle, Vicente</creator><creator>Boudjema, Fares</creator><creator>Benlahbib, Boualam</creator><creator>Batoun, Bachir</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3578-7910</orcidid></search><sort><creationdate>20190722</creationdate><title>Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System</title><author>Bouarroudj, Noureddine ; Boukhetala, Djamel ; Feliu-Batlle, Vicente ; Boudjema, Fares ; Benlahbib, Boualam ; Batoun, Bachir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithms</topic><topic>adaptive RBF-NN</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Back propagation</topic><topic>boost converter</topic><topic>Composition</topic><topic>Computer simulation</topic><topic>Conductance</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Converters</topic><topic>Current sources</topic><topic>Diodes</topic><topic>Electric potential</topic><topic>Flow charts</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Incremental conductance</topic><topic>Irradiance</topic><topic>Load fluctuation</topic><topic>Mathematical models</topic><topic>Maximum power</topic><topic>Methods</topic><topic>MPPT controller</topic><topic>Neural networks</topic><topic>Oscillations</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>PV-module</topic><topic>Radial basis function</topic><topic>Real numbers</topic><topic>Solar energy</topic><topic>Variables</topic><topic>Voltage</topic><topic>Voltage converters (DC to DC)</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouarroudj, Noureddine</creatorcontrib><creatorcontrib>Boukhetala, Djamel</creatorcontrib><creatorcontrib>Feliu-Batlle, Vicente</creatorcontrib><creatorcontrib>Boudjema, Fares</creatorcontrib><creatorcontrib>Benlahbib, Boualam</creatorcontrib><creatorcontrib>Batoun, Bachir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouarroudj, Noureddine</au><au>Boukhetala, Djamel</au><au>Feliu-Batlle, Vicente</au><au>Boudjema, Fares</au><au>Benlahbib, Boualam</au><au>Batoun, Bachir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System</atitle><jtitle>Energies (Basel)</jtitle><date>2019-07-22</date><risdate>2019</risdate><volume>12</volume><issue>14</issue><spage>2827</spage><pages>2827-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>In this article, a novel maximum power point tracking (MPPT) controller for a photovoltaic (PV) system is presented. The proposed MPPT controller was designed in order to extract the maximum of power from the PV-module and reduce the oscillations once the maximum power point (MPP) had been achieved. To reach this goal, a combination of fuzzy logic and an adaptive radial basis function neural network (RBF-NN) was used to drive a DC-DC Boost converter which was used to link the PV-module and a resistive load. First, a fuzzy logic system, whose single input was based on the incremental conductance (INC) method, was used for a variable voltage step size searching while reducing the oscillations around the MPP. Second, an RBF-NN controller was developed to keep the PV-module voltage at the optimal voltage generated from the first stage. To ensure a real MPPT in all cases (change of weather conditions and load variation) an adaptive law based on backpropagation algorithm with the gradient descent method was used to tune the weights of RBF-NN in order to minimize a mean-squared-error (MSE) criterion. Finally, through the simulation results, our proposed MPPT method outperforms the classical P and O and INC-adaptive RBF-NN in terms of efficiency.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en12142827</doi><orcidid>https://orcid.org/0000-0002-3578-7910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2019-07, Vol.12 (14), p.2827 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4947a54fca384c59aae542810254f8bb |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Adaptive algorithms adaptive RBF-NN Adaptive systems Algorithms Alternative energy sources Back propagation boost converter Composition Computer simulation Conductance Control systems design Controllers Converters Current sources Diodes Electric potential Flow charts Fuzzy logic Fuzzy sets Fuzzy systems Incremental conductance Irradiance Load fluctuation Mathematical models Maximum power Methods MPPT controller Neural networks Oscillations Photovoltaic cells Photovoltaics PV-module Radial basis function Real numbers Solar energy Variables Voltage Voltage converters (DC to DC) Weather |
title | Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Power%20Point%20Tracker%20Based%20on%20Fuzzy%20Adaptive%20Radial%20Basis%20Function%20Neural%20Network%20for%20PV-System&rft.jtitle=Energies%20(Basel)&rft.au=Bouarroudj,%20Noureddine&rft.date=2019-07-22&rft.volume=12&rft.issue=14&rft.spage=2827&rft.pages=2827-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en12142827&rft_dat=%3Cproquest_doaj_%3E2403408856%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316944356&rft_id=info:pmid/&rfr_iscdi=true |