Loading…

Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System

In this article, a novel maximum power point tracking (MPPT) controller for a photovoltaic (PV) system is presented. The proposed MPPT controller was designed in order to extract the maximum of power from the PV-module and reduce the oscillations once the maximum power point (MPP) had been achieved....

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2019-07, Vol.12 (14), p.2827
Main Authors: Bouarroudj, Noureddine, Boukhetala, Djamel, Feliu-Batlle, Vicente, Boudjema, Fares, Benlahbib, Boualam, Batoun, Bachir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503
cites cdi_FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503
container_end_page
container_issue 14
container_start_page 2827
container_title Energies (Basel)
container_volume 12
creator Bouarroudj, Noureddine
Boukhetala, Djamel
Feliu-Batlle, Vicente
Boudjema, Fares
Benlahbib, Boualam
Batoun, Bachir
description In this article, a novel maximum power point tracking (MPPT) controller for a photovoltaic (PV) system is presented. The proposed MPPT controller was designed in order to extract the maximum of power from the PV-module and reduce the oscillations once the maximum power point (MPP) had been achieved. To reach this goal, a combination of fuzzy logic and an adaptive radial basis function neural network (RBF-NN) was used to drive a DC-DC Boost converter which was used to link the PV-module and a resistive load. First, a fuzzy logic system, whose single input was based on the incremental conductance (INC) method, was used for a variable voltage step size searching while reducing the oscillations around the MPP. Second, an RBF-NN controller was developed to keep the PV-module voltage at the optimal voltage generated from the first stage. To ensure a real MPPT in all cases (change of weather conditions and load variation) an adaptive law based on backpropagation algorithm with the gradient descent method was used to tune the weights of RBF-NN in order to minimize a mean-squared-error (MSE) criterion. Finally, through the simulation results, our proposed MPPT method outperforms the classical P and O and INC-adaptive RBF-NN in terms of efficiency.
doi_str_mv 10.3390/en12142827
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4947a54fca384c59aae542810254f8bb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4947a54fca384c59aae542810254f8bb</doaj_id><sourcerecordid>2403408856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503</originalsourceid><addsrcrecordid>eNp9kctOwzAQRSMEEqh0wxdEYocUsD1OYi9LxUviJV5ba-rYyKWNi50A5esxFAErvLDHd46urmaybIeSfQBJDkxLGeVMsHot26JSVgUlNaz_qTezYYxTkg4ABYCtzF7gm5v38_zav5qQbtd2-V1A_ZR-hxhNk_s2P-7f35f5qMFF515MfoONw9ln28XUa3XnEnRp-pDUS9O9-vCUW5_sHorbZezMfDvbsDiLZvj9DrL746O78WlxfnVyNh6dFxqE7AoQegKMSqgmlkhjWSkpIdYQAUwYpMQgqyxLjCANVJYiVDpBlWjqWpQEBtnZyrfxOFWL4OYYlsqjU1-CD48KQ-f0zCgueY0ltxpBcF1KRFOm4VHCkigmk-S1u_JaBP_cm9ipqe9Dm-IrxglwIkRZ_UsBrSTn8EXtrSgdfIzB2J9slKjP5anf5cEHC9iIzA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316944356</pqid></control><display><type>article</type><title>Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Bouarroudj, Noureddine ; Boukhetala, Djamel ; Feliu-Batlle, Vicente ; Boudjema, Fares ; Benlahbib, Boualam ; Batoun, Bachir</creator><creatorcontrib>Bouarroudj, Noureddine ; Boukhetala, Djamel ; Feliu-Batlle, Vicente ; Boudjema, Fares ; Benlahbib, Boualam ; Batoun, Bachir</creatorcontrib><description>In this article, a novel maximum power point tracking (MPPT) controller for a photovoltaic (PV) system is presented. The proposed MPPT controller was designed in order to extract the maximum of power from the PV-module and reduce the oscillations once the maximum power point (MPP) had been achieved. To reach this goal, a combination of fuzzy logic and an adaptive radial basis function neural network (RBF-NN) was used to drive a DC-DC Boost converter which was used to link the PV-module and a resistive load. First, a fuzzy logic system, whose single input was based on the incremental conductance (INC) method, was used for a variable voltage step size searching while reducing the oscillations around the MPP. Second, an RBF-NN controller was developed to keep the PV-module voltage at the optimal voltage generated from the first stage. To ensure a real MPPT in all cases (change of weather conditions and load variation) an adaptive law based on backpropagation algorithm with the gradient descent method was used to tune the weights of RBF-NN in order to minimize a mean-squared-error (MSE) criterion. Finally, through the simulation results, our proposed MPPT method outperforms the classical P and O and INC-adaptive RBF-NN in terms of efficiency.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en12142827</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive algorithms ; adaptive RBF-NN ; Adaptive systems ; Algorithms ; Alternative energy sources ; Back propagation ; boost converter ; Composition ; Computer simulation ; Conductance ; Control systems design ; Controllers ; Converters ; Current sources ; Diodes ; Electric potential ; Flow charts ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Incremental conductance ; Irradiance ; Load fluctuation ; Mathematical models ; Maximum power ; Methods ; MPPT controller ; Neural networks ; Oscillations ; Photovoltaic cells ; Photovoltaics ; PV-module ; Radial basis function ; Real numbers ; Solar energy ; Variables ; Voltage ; Voltage converters (DC to DC) ; Weather</subject><ispartof>Energies (Basel), 2019-07, Vol.12 (14), p.2827</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503</citedby><cites>FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503</cites><orcidid>0000-0002-3578-7910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2316944356/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2316944356?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Bouarroudj, Noureddine</creatorcontrib><creatorcontrib>Boukhetala, Djamel</creatorcontrib><creatorcontrib>Feliu-Batlle, Vicente</creatorcontrib><creatorcontrib>Boudjema, Fares</creatorcontrib><creatorcontrib>Benlahbib, Boualam</creatorcontrib><creatorcontrib>Batoun, Bachir</creatorcontrib><title>Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System</title><title>Energies (Basel)</title><description>In this article, a novel maximum power point tracking (MPPT) controller for a photovoltaic (PV) system is presented. The proposed MPPT controller was designed in order to extract the maximum of power from the PV-module and reduce the oscillations once the maximum power point (MPP) had been achieved. To reach this goal, a combination of fuzzy logic and an adaptive radial basis function neural network (RBF-NN) was used to drive a DC-DC Boost converter which was used to link the PV-module and a resistive load. First, a fuzzy logic system, whose single input was based on the incremental conductance (INC) method, was used for a variable voltage step size searching while reducing the oscillations around the MPP. Second, an RBF-NN controller was developed to keep the PV-module voltage at the optimal voltage generated from the first stage. To ensure a real MPPT in all cases (change of weather conditions and load variation) an adaptive law based on backpropagation algorithm with the gradient descent method was used to tune the weights of RBF-NN in order to minimize a mean-squared-error (MSE) criterion. Finally, through the simulation results, our proposed MPPT method outperforms the classical P and O and INC-adaptive RBF-NN in terms of efficiency.</description><subject>Adaptive algorithms</subject><subject>adaptive RBF-NN</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Back propagation</subject><subject>boost converter</subject><subject>Composition</subject><subject>Computer simulation</subject><subject>Conductance</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Converters</subject><subject>Current sources</subject><subject>Diodes</subject><subject>Electric potential</subject><subject>Flow charts</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Incremental conductance</subject><subject>Irradiance</subject><subject>Load fluctuation</subject><subject>Mathematical models</subject><subject>Maximum power</subject><subject>Methods</subject><subject>MPPT controller</subject><subject>Neural networks</subject><subject>Oscillations</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>PV-module</subject><subject>Radial basis function</subject><subject>Real numbers</subject><subject>Solar energy</subject><subject>Variables</subject><subject>Voltage</subject><subject>Voltage converters (DC to DC)</subject><subject>Weather</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctOwzAQRSMEEqh0wxdEYocUsD1OYi9LxUviJV5ba-rYyKWNi50A5esxFAErvLDHd46urmaybIeSfQBJDkxLGeVMsHot26JSVgUlNaz_qTezYYxTkg4ABYCtzF7gm5v38_zav5qQbtd2-V1A_ZR-hxhNk_s2P-7f35f5qMFF515MfoONw9ln28XUa3XnEnRp-pDUS9O9-vCUW5_sHorbZezMfDvbsDiLZvj9DrL746O78WlxfnVyNh6dFxqE7AoQegKMSqgmlkhjWSkpIdYQAUwYpMQgqyxLjCANVJYiVDpBlWjqWpQEBtnZyrfxOFWL4OYYlsqjU1-CD48KQ-f0zCgueY0ltxpBcF1KRFOm4VHCkigmk-S1u_JaBP_cm9ipqe9Dm-IrxglwIkRZ_UsBrSTn8EXtrSgdfIzB2J9slKjP5anf5cEHC9iIzA</recordid><startdate>20190722</startdate><enddate>20190722</enddate><creator>Bouarroudj, Noureddine</creator><creator>Boukhetala, Djamel</creator><creator>Feliu-Batlle, Vicente</creator><creator>Boudjema, Fares</creator><creator>Benlahbib, Boualam</creator><creator>Batoun, Bachir</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3578-7910</orcidid></search><sort><creationdate>20190722</creationdate><title>Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System</title><author>Bouarroudj, Noureddine ; Boukhetala, Djamel ; Feliu-Batlle, Vicente ; Boudjema, Fares ; Benlahbib, Boualam ; Batoun, Bachir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithms</topic><topic>adaptive RBF-NN</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Back propagation</topic><topic>boost converter</topic><topic>Composition</topic><topic>Computer simulation</topic><topic>Conductance</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Converters</topic><topic>Current sources</topic><topic>Diodes</topic><topic>Electric potential</topic><topic>Flow charts</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Incremental conductance</topic><topic>Irradiance</topic><topic>Load fluctuation</topic><topic>Mathematical models</topic><topic>Maximum power</topic><topic>Methods</topic><topic>MPPT controller</topic><topic>Neural networks</topic><topic>Oscillations</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>PV-module</topic><topic>Radial basis function</topic><topic>Real numbers</topic><topic>Solar energy</topic><topic>Variables</topic><topic>Voltage</topic><topic>Voltage converters (DC to DC)</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouarroudj, Noureddine</creatorcontrib><creatorcontrib>Boukhetala, Djamel</creatorcontrib><creatorcontrib>Feliu-Batlle, Vicente</creatorcontrib><creatorcontrib>Boudjema, Fares</creatorcontrib><creatorcontrib>Benlahbib, Boualam</creatorcontrib><creatorcontrib>Batoun, Bachir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouarroudj, Noureddine</au><au>Boukhetala, Djamel</au><au>Feliu-Batlle, Vicente</au><au>Boudjema, Fares</au><au>Benlahbib, Boualam</au><au>Batoun, Bachir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System</atitle><jtitle>Energies (Basel)</jtitle><date>2019-07-22</date><risdate>2019</risdate><volume>12</volume><issue>14</issue><spage>2827</spage><pages>2827-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>In this article, a novel maximum power point tracking (MPPT) controller for a photovoltaic (PV) system is presented. The proposed MPPT controller was designed in order to extract the maximum of power from the PV-module and reduce the oscillations once the maximum power point (MPP) had been achieved. To reach this goal, a combination of fuzzy logic and an adaptive radial basis function neural network (RBF-NN) was used to drive a DC-DC Boost converter which was used to link the PV-module and a resistive load. First, a fuzzy logic system, whose single input was based on the incremental conductance (INC) method, was used for a variable voltage step size searching while reducing the oscillations around the MPP. Second, an RBF-NN controller was developed to keep the PV-module voltage at the optimal voltage generated from the first stage. To ensure a real MPPT in all cases (change of weather conditions and load variation) an adaptive law based on backpropagation algorithm with the gradient descent method was used to tune the weights of RBF-NN in order to minimize a mean-squared-error (MSE) criterion. Finally, through the simulation results, our proposed MPPT method outperforms the classical P and O and INC-adaptive RBF-NN in terms of efficiency.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en12142827</doi><orcidid>https://orcid.org/0000-0002-3578-7910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2019-07, Vol.12 (14), p.2827
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4947a54fca384c59aae542810254f8bb
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Adaptive algorithms
adaptive RBF-NN
Adaptive systems
Algorithms
Alternative energy sources
Back propagation
boost converter
Composition
Computer simulation
Conductance
Control systems design
Controllers
Converters
Current sources
Diodes
Electric potential
Flow charts
Fuzzy logic
Fuzzy sets
Fuzzy systems
Incremental conductance
Irradiance
Load fluctuation
Mathematical models
Maximum power
Methods
MPPT controller
Neural networks
Oscillations
Photovoltaic cells
Photovoltaics
PV-module
Radial basis function
Real numbers
Solar energy
Variables
Voltage
Voltage converters (DC to DC)
Weather
title Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Power%20Point%20Tracker%20Based%20on%20Fuzzy%20Adaptive%20Radial%20Basis%20Function%20Neural%20Network%20for%20PV-System&rft.jtitle=Energies%20(Basel)&rft.au=Bouarroudj,%20Noureddine&rft.date=2019-07-22&rft.volume=12&rft.issue=14&rft.spage=2827&rft.pages=2827-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en12142827&rft_dat=%3Cproquest_doaj_%3E2403408856%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-38cb321936bf09ef259100fe08328ea10ea26f2b3280d36f1a36c25968d778503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316944356&rft_id=info:pmid/&rfr_iscdi=true