Loading…
The Threat of Potentially Pathogenic Bacteria in the Feces of Bats
Bats have attracted global attention because of their zoonotic association with severe acute respiratory syndrome coronavirus (SARS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous and ongoing studies have predominantly focused on bat-borne viruses; however, the preval...
Saved in:
Published in: | Microbiology spectrum 2022-12, Vol.10 (6), p.e0180222-e0180222 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bats have attracted global attention because of their zoonotic association with severe acute respiratory syndrome coronavirus (SARS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous and ongoing studies have predominantly focused on bat-borne viruses; however, the prevalence or abundance of bat-borne pathogenic bacteria and their potential public health significance have largely been neglected. For the first time, this study used both metataxonomics (16S rRNA marker gene sequencing) and culturomics (traditional culture methods) to systematically evaluate the potential public health significance of bat fecal pathogenic bacteria. To this end, fecal samples were obtained from five bat species across different locations in China, and their microbiota composition was analyzed. The results revealed that the bat microbiome was most commonly dominated by Proteobacteria, while the strictly anaerobic phylum Bacteroidetes occupied 35.3% of the relative abundance in
spp. and 36.3% in
spp., but less than 2.7% in the other three bat species (
spp.,
spp., and
spp.). We detected 480 species-level phylotypes (SLPs) with PacBio sequencing, including 89 known species, 330 potentially new species, and 61 potentially higher taxa. In addition, a total of 325 species were identified by culturomics, and these were classified into 242 named species and 83 potentially novel species. Of note, 32 of the 89 (36.0%) known species revealed by PacBio sequencing were found to be pathogenic bacteria, and 69 of the 242 (28.5%) known species isolated by culturomics were harmful to people, animals, or plants. Additionally, nearly 40 potential novel species which may be potential bacterial pathogens were identified.
Bats are one of the most diverse and widely distributed groups of mammals living in close proximity to humans. In recent years, bat-borne viruses and the viral zoonotic diseases associated with bats have been studied in great detail. However, the prevalence and abundance of pathogenic bacteria in bats have been largely ignored. This study used high-throughput sequencing techniques (metataxonomics) in combination with traditional culture methods (culturomics) to analyze the bacterial flora in bat feces from different species of bats in China, revealing that bats are natural hosts of pathogenic bacteria and carry many unknown bacteria. The results of this study can be used as guidance for future investigations of bacterial pathogens in bats. |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/spectrum.01802-22 |