Loading…
Glucocorticoid guides mobilization of bone marrow stem/progenitor cells via FPR and CXCR4 coupling
Our previous studies have proved the efficient exogenous repairing responses via bone marrow stem and progenitor cells (BMSPCs). However, the trafficking of endogenous bone marrow stem and progenitor cells to and from the bone marrow (BM) is a highly regulated process that remains to be elucidated....
Saved in:
Published in: | Stem cell research & therapy 2021-01, Vol.12 (1), p.16-16, Article 16 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Our previous studies have proved the efficient exogenous repairing responses via bone marrow stem and progenitor cells (BMSPCs). However, the trafficking of endogenous bone marrow stem and progenitor cells to and from the bone marrow (BM) is a highly regulated process that remains to be elucidated. We aimed to study the relative importance of the hypothalamic-pituitary-adrenal (HPA) axis in the glucocorticoid-induced BMSPC mobilization.
The circulating mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) were examined in Crh (+/+, -/-) mice after running stress or glucocorticoid mini-infusion. The MSCs and EPCs were investigated ex vivo after treatment with glucocorticoid and glucocorticoid receptor (GR) antagonist, RU486. The expression of chemotaxis receptors, N-formyl peptide receptor (FPR), and Cys-X-Cys receptor 4 (CXCR4) of MSCs and EPCs as well as their colocalization were investigated after treatment with glucocorticoid, glucocorticoid receptor (GR) antagonist (RU486), and FPR antagonist (Cyclosporin H).
Forced running stress increased circulating MSCs and EPCs in mice, which was blunted when Crh was knocked out, and positively related to the levels of serum glucocorticoid. Prolonged glucocorticoid mini-infusion imitated the stress-induced increase in circulating MSCs and EPCs in Crh
mice and rescued the impaired mobilization in circulating MSCs and EPCs in Crh
mice. Meanwhile, glucocorticoid promoted the chemotaxis of MSCs and EPCs ex vivo via GR, inhibited by RU486 (10 μM). Concurrently, glucocorticoid increased the expression of FPR of MSCs and EPCs, but inhibited their expression of CXCR4, followed by their changing colocalization in the cytoplasm. The GC-induced colocalization of FPR and CXCR4 was blunted by Cyclosporin H (1 μM).
Glucocorticoid-induced CXCR4-FPR responsiveness selectively guides the mobilization of BMSPCs, which is essential to functional tissue repair. Schematic view of the role of glucocorticoid on the mobilization of bone marrow-derived stem/progenitor cells subsets in the present study. The HPA axis activation promotes the release of glucocorticoid, which regulates the directional migration of MSCs and EPCs mainly via GR. The possible mechanisms refer to the signal coupling of FPR and CXCR4. Their two-sided changes regulated by glucocorticoid are involved in the egress of MSCs and EPCs from BM, which is helpful for wound healing. MSCs, mesenchymal stem cells; EPCs, endothelial progenitor cells. |
---|---|
ISSN: | 1757-6512 1757-6512 |
DOI: | 10.1186/s13287-020-02071-1 |